Semi-implicit finite strain constitutive integration of porous plasticity models

Two porous plasticity models, Rousselier and Gurson–Tvergaard–Needleman (GTN), are integrated with a new semi-implicit integration algorithm for finite strain plasticity. It consists of using relative Green–Lagrange during the iteration process and incremental frame updating corresponding to a polar...

Full description

Saved in:
Bibliographic Details
Published in:Finite elements in analysis and design Vol. 104; pp. 41 - 55
Main Authors: Areias, P., Rabczuk, T., César de Sá, J.
Format: Journal Article
Language:English
Published: Elsevier B.V 15.10.2015
Subjects:
ISSN:0168-874X, 1872-6925
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Two porous plasticity models, Rousselier and Gurson–Tvergaard–Needleman (GTN), are integrated with a new semi-implicit integration algorithm for finite strain plasticity. It consists of using relative Green–Lagrange during the iteration process and incremental frame updating corresponding to a polar decomposition. Lowdin׳s method of orthogonalization is adopted to ensure incremental frame-invariance. In addition, a smooth replacement of the complementarity condition is used. Since porous models are known to be difficult to integrate due to the combined effect of void fraction growth, stress and effective plastic strain evolution, we perform a complete assessment of our semi-implicit algorithm. Semi-implicit algorithms take advantage of different evolution rates to enhance the robustness in difficult to converge problems. A detailed description of the constitutive algorithm is performed, with the key components comprehensively exposed. In addition to the fully detailed constitutive algorithms, we use mixed finite strain elements based on Arnold׳s MINI formulation. This formulation passes the inf–sup test and allows a direct application with porous models. Isoerror maps for two common initial stress states are shown. In addition, we extensively test the two models with established benchmarks. Specifically, the cylindrical tension test as well as the butterfly shear specimen are adopted for validation. A 3D tension test is used to investigate mesh dependence and the effect of a length scale. Results show remarkable robustness. •The combination of relative Green-Lagrange strains with the exact corotational method.•The use of L¨owdin algorithm based on the Jacobians of configurations Ωb and Ωa.•Replacement of the complementarity condition by the Chen-Mangasarian function.•GTN and Rousselier constitutive models, with the determination of intersections with axes of pressure-shear diagram (p − q).•The use of MINI element in triangles and tetrahedra to avoid locking due to quasi-incompressibility.
AbstractList Two porous plasticity models, Rousselier and Gurson–Tvergaard–Needleman (GTN), are integrated with a new semi-implicit integration algorithm for finite strain plasticity. It consists of using relative Green–Lagrange during the iteration process and incremental frame updating corresponding to a polar decomposition. Lowdin׳s method of orthogonalization is adopted to ensure incremental frame-invariance. In addition, a smooth replacement of the complementarity condition is used. Since porous models are known to be difficult to integrate due to the combined effect of void fraction growth, stress and effective plastic strain evolution, we perform a complete assessment of our semi-implicit algorithm. Semi-implicit algorithms take advantage of different evolution rates to enhance the robustness in difficult to converge problems. A detailed description of the constitutive algorithm is performed, with the key components comprehensively exposed. In addition to the fully detailed constitutive algorithms, we use mixed finite strain elements based on Arnold׳s MINI formulation. This formulation passes the inf–sup test and allows a direct application with porous models. Isoerror maps for two common initial stress states are shown. In addition, we extensively test the two models with established benchmarks. Specifically, the cylindrical tension test as well as the butterfly shear specimen are adopted for validation. A 3D tension test is used to investigate mesh dependence and the effect of a length scale. Results show remarkable robustness. •The combination of relative Green-Lagrange strains with the exact corotational method.•The use of L¨owdin algorithm based on the Jacobians of configurations Ωb and Ωa.•Replacement of the complementarity condition by the Chen-Mangasarian function.•GTN and Rousselier constitutive models, with the determination of intersections with axes of pressure-shear diagram (p − q).•The use of MINI element in triangles and tetrahedra to avoid locking due to quasi-incompressibility.
Two porous plasticity models, Rousselier and Gurson-Tvergaard-Needleman (GTN), are integrated with a new semi-implicit integration algorithm for finite strain plasticity. It consists of using relative Green-Lagrange during the iteration process and incremental frame updating corresponding to a polar decomposition. Lowdin's method of orthogonalization is adopted to ensure incremental frame-invariance. In addition, a smooth replacement of the complementarity condition is used. Since porous models are known to be difficult to integrate due to the combined effect of void fraction growth, stress and effective plastic strain evolution, we perform a complete assessment of our semi-implicit algorithm. Semi-implicit algorithms take advantage of different evolution rates to enhance the robustness in difficult to converge problems. A detailed description of the constitutive algorithm is performed, with the key components comprehensively exposed. In addition to the fully detailed constitutive algorithms, we use mixed finite strain elements based on Arnold's MINI formulation. This formulation passes the inf-sup test and allows a direct application with porous models. Isoerror maps for two common initial stress states are shown. In addition, we extensively test the two models with established benchmarks. Specifically, the cylindrical tension test as well as the butterfly shear specimen are adopted for validation. A 3D tension test is used to investigate mesh dependence and the effect of a length scale. Results show remarkable robustness.
Author Rabczuk, T.
Areias, P.
César de Sá, J.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0001-6865-1326
  surname: Areias
  fullname: Areias, P.
  organization: Department of Physics, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7002-554 Évora, Portugal
– sequence: 2
  givenname: T.
  surname: Rabczuk
  fullname: Rabczuk, T.
  organization: Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, 99423 Weimar, Germany
– sequence: 3
  givenname: J.
  surname: César de Sá
  fullname: César de Sá, J.
  organization: Mechanical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
BookMark eNqFkE1LAzEQhoNUsK3-Ai979LI12a9kDx6k-AWCggreQsxOZMpusiZpof_etPXkQWFgLs_zMvPOyMQ6C4ScM7pglDWXq4VBC_2ioKxe0DS0PiJTJniRN21RT8g0USIXvHo_IbMQVjQRRVNNyfMLDJjjMPaoMWYpBiNkIXqFNtPOhohxHXEDGdoIn15FdDZzJhudd-uQjb1KSFK32eA66MMpOTaqD3D2s-fk7fbmdXmfPz7dPSyvH3Ndlk3Mq8aUZdXyUnSNEVppBRUI1TVKtYYzUTDaCMparbkxH0UNlHfUCKGrgmutVTknF4fc0buvNYQoBwwa-l5ZSIdJxuuyEpzTOqHtAdXeheDByHTv_pHdm71kVO5alCu5b1HuWpQ0zd4tf7mjx0H57T_W1cFKhcAGwcugEayGDj3oKDuHf_rfEp2RdQ
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109909
crossref_primary_10_1002_nag_3503
crossref_primary_10_1016_j_dt_2020_02_018
crossref_primary_10_1007_s10999_016_9358_x
crossref_primary_10_1016_j_compstruc_2016_05_004
crossref_primary_10_1016_j_cma_2021_114356
crossref_primary_10_1007_s10704_022_00659_7
Cites_doi 10.1002/nme.4571
10.1115/1.3443401
10.1007/BF02576171
10.1016/S0065-3276(08)60339-1
10.1016/j.engfracmech.2009.01.003
10.1061/(ASCE)0893-1321(2006)19:4(259)
10.1002/nme.1620290304
10.1108/17579861011099150
10.1007/s00466-013-0885-0
10.1016/0045-7825(92)90123-2
10.1115/1.3224807
10.1016/j.euromechsol.2007.08.002
10.1007/BF00249052
10.1016/S0045-7825(99)00063-8
10.1016/j.ijplas.2007.09.004
10.1016/0045-7825(90)90131-5
10.1103/PhysRev.105.102
10.1007/BF01592244
10.1016/0022-5096(78)90010-8
10.1007/s00466-011-0659-5
10.1007/BF00036191
10.1016/j.engfracmech.2007.07.022
10.1016/j.ijplas.2011.10.005
10.1016/0029-5493(87)90234-2
10.1016/j.actamat.2009.10.058
10.1016/0001-6160(84)90213-X
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.finel.2015.05.005
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
EndPage 55
ExternalDocumentID 10_1016_j_finel_2015_05_005
S0168874X15000803
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-46f3349738d6f8cacae4e8ad6aa9f71821068019cc7ffb25e07d0f88c427ccca3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358264300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Sun Nov 09 10:28:52 EST 2025
Tue Nov 18 21:34:49 EST 2025
Sat Nov 29 04:56:30 EST 2025
Fri Feb 23 02:34:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Constitutive integration
Semi-implicit
Finite strains
Porous plasticity
Löwdin׳s method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-46f3349738d6f8cacae4e8ad6aa9f71821068019cc7ffb25e07d0f88c427ccca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6865-1326
PQID 1753487705
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1753487705
crossref_citationtrail_10_1016_j_finel_2015_05_005
crossref_primary_10_1016_j_finel_2015_05_005
elsevier_sciencedirect_doi_10_1016_j_finel_2015_05_005
PublicationCentury 2000
PublicationDate 2015-10-15
PublicationDateYYYYMMDD 2015-10-15
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Finite elements in analysis and design
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Areias, Belytschko (bib2) 2006; 19
P. Areias. Simplas.
Nahshon, Xue (bib25) 2009; 76
Cao, Montmitonnet, Bouchard (bib11) 2013; 96
Bai, Wierzbicki. (bib6) 2008; 24
Betsch, Stein (bib9) 1999; 179
Bathe (bib7) 1996
Reis, Malcher, Andrade Pires, César de Sá (bib28) 2010; 1
Arnold, Brezzi, Fortin (bib5) 1984; XXI
Tvergaard, Needleman (bib35) 1984; 32
Wolfram Research Inc. Mathematica, 2007.
Ogden (bib27) 1997
Roters, Eisenlohr, Hantcherli, Tjahjanto, Bieler, Raabe (bib30) 2010; 58
Lemaitre (bib18) 1996
Löwdin (bib19) 1950; 5
Gurson (bib16) 1977; 99
Chen, Mangasarian (bib13) 1995; 71
Korelc (bib17) 2002; 18
Xue (bib37) 2008; 75
Chen, Mangasarian (bib14) 1996; 5
Carlson, Keller (bib12) 1957; 105
Lubliner (bib20) 1990
Moran, Ortiz, Shih (bib23) 1990; 29
Malcher, Andrade Pires, César de Sá (bib21) 2012; 30–31
Rousselier (bib31) 1987; 105
Areias, Dias-da Costa, Sargado, Rabczuk (bib4) 2013; 52
Chu, Needleman (bib15) 1980; 102
Tvergaard (bib34) 1981; 17
.
Broberg (bib10) 1999
Simo (bib32) 1992; 99
Belytschko, Liu, Moran (bib8) 2000
Areias, Dias-da-Costa, Pires, Infante Barbosa (bib3) 2012; 49
Weber, Anand (bib36) 1990; 79
Malcher, Andrade Pires, César de Sá (bib22) 2014; 54
Simo, Hughes (bib33) 2000
Nahshon, Hutchinson (bib24) 2008; 27
Norris, Moran, Scudder, Quiñones (bib26) 1978; 26
Nahshon (10.1016/j.finel.2015.05.005_bib24) 2008; 27
Rousselier (10.1016/j.finel.2015.05.005_bib31) 1987; 105
Belytschko (10.1016/j.finel.2015.05.005_bib8) 2000
Korelc (10.1016/j.finel.2015.05.005_bib17) 2002; 18
Gurson (10.1016/j.finel.2015.05.005_bib16) 1977; 99
Simo (10.1016/j.finel.2015.05.005_bib32) 1992; 99
Areias (10.1016/j.finel.2015.05.005_bib2) 2006; 19
Weber (10.1016/j.finel.2015.05.005_bib36) 1990; 79
Areias (10.1016/j.finel.2015.05.005_bib4) 2013; 52
Tvergaard (10.1016/j.finel.2015.05.005_bib34) 1981; 17
Arnold (10.1016/j.finel.2015.05.005_bib5) 1984; XXI
Malcher (10.1016/j.finel.2015.05.005_bib22) 2014; 54
Tvergaard (10.1016/j.finel.2015.05.005_bib35) 1984; 32
Xue (10.1016/j.finel.2015.05.005_bib37) 2008; 75
Bathe (10.1016/j.finel.2015.05.005_bib7) 1996
Reis (10.1016/j.finel.2015.05.005_bib28) 2010; 1
Simo (10.1016/j.finel.2015.05.005_bib33) 2000
Chen (10.1016/j.finel.2015.05.005_bib14) 1996; 5
Löwdin (10.1016/j.finel.2015.05.005_bib19) 1950; 5
Roters (10.1016/j.finel.2015.05.005_bib30) 2010; 58
Moran (10.1016/j.finel.2015.05.005_bib23) 1990; 29
Norris (10.1016/j.finel.2015.05.005_bib26) 1978; 26
Carlson (10.1016/j.finel.2015.05.005_bib12) 1957; 105
Lubliner (10.1016/j.finel.2015.05.005_bib20) 1990
Broberg (10.1016/j.finel.2015.05.005_bib10) 1999
Nahshon (10.1016/j.finel.2015.05.005_bib25) 2009; 76
Bai (10.1016/j.finel.2015.05.005_bib6) 2008; 24
Chen (10.1016/j.finel.2015.05.005_bib13) 1995; 71
Malcher (10.1016/j.finel.2015.05.005_bib21) 2012; 30–31
Ogden (10.1016/j.finel.2015.05.005_bib27) 1997
Areias (10.1016/j.finel.2015.05.005_bib3) 2012; 49
Lemaitre (10.1016/j.finel.2015.05.005_bib18) 1996
Betsch (10.1016/j.finel.2015.05.005_bib9) 1999; 179
Chu (10.1016/j.finel.2015.05.005_bib15) 1980; 102
Cao (10.1016/j.finel.2015.05.005_bib11) 2013; 96
10.1016/j.finel.2015.05.005_bib29
10.1016/j.finel.2015.05.005_bib1
References_xml – volume: 18
  start-page: 312
  year: 2002
  end-page: 327
  ident: bib17
  article-title: Multi-language and multi-environment generation of nonlinear finite element codes,
– volume: 29
  start-page: 483
  year: 1990
  end-page: 514
  ident: bib23
  article-title: Formulation of implicit finite element methods for multiplicative finite deformation plasticity
  publication-title: Int. J. Numer. Methods Eng.
– volume: 71
  start-page: 51
  year: 1995
  end-page: 69
  ident: bib13
  article-title: Smoothing methods for convex inequalities and linear complementarity problems
  publication-title: Math. Program.
– volume: 102
  start-page: 249
  year: 1980
  end-page: 256
  ident: bib15
  article-title: Void nucleation effects in biaxially stretched sheets
  publication-title: J. Mater. Process. Technol.
– year: 1997
  ident: bib27
  publication-title: Non-linear Elastic Deformations
– volume: 79
  start-page: 173
  year: 1990
  end-page: 202
  ident: bib36
  article-title: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic–viscoplastic solids
  publication-title: Comput. Method Appl. Mech.
– year: 1996
  ident: bib18
  publication-title: A Course on Damage Mechanics
– volume: 75
  start-page: 3343
  year: 2008
  end-page: 3366
  ident: bib37
  article-title: Constitutive modeling of void shearing effect in ductile fracture of porous materials
  publication-title: Eng. Fract. Mech.
– year: 2000
  ident: bib33
  article-title: Computational Inelasticity
  publication-title: Corrected Second Printing edition
– volume: 99
  start-page: 61
  year: 1992
  end-page: 112
  ident: bib32
  article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory
  publication-title: Comput. Method Appl. Mech.
– volume: 5
  start-page: 97
  year: 1996
  end-page: 138
  ident: bib14
  article-title: A class of smoothing functions for nonlinear and mixed complementarity problems
  publication-title: Comput. Optim. Appl.
– reference: P. Areias. Simplas. 〈
– volume: XXI
  start-page: 337
  year: 1984
  end-page: 344
  ident: bib5
  article-title: A stable finite element for the Stokes equations
  publication-title: Calcolo
– volume: 32
  start-page: 157
  year: 1984
  end-page: 169
  ident: bib35
  article-title: Analysis of cup-cone fracture in a round tensile bar
  publication-title: Acta Metall.
– volume: 24
  start-page: 1071
  year: 2008
  end-page: 1096
  ident: bib6
  article-title: A new model of metal plasticity and fracture with pressure and Lode dependence
  publication-title: Int. J. Plast.
– volume: 58
  start-page: 1152
  year: 2010
  end-page: 1211
  ident: bib30
  article-title: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications
  publication-title: Acta Mater.
– year: 1999
  ident: bib10
  publication-title: Cracks and Fracture
– reference: 〉.
– volume: 99
  start-page: 2
  year: 1977
  end-page: 15
  ident: bib16
  article-title: Continuum theory of ductile rupture by void nucleation and growth
  publication-title: J. Eng. Mater. Technol.
– volume: 52
  start-page: 1429
  year: 2013
  end-page: 1443
  ident: bib4
  article-title: Element-wise algorithm for modeling ductile fracture with the Rousselier yield function
  publication-title: Comput. Mech.
– volume: 49
  start-page: 545
  year: 2012
  end-page: 564
  ident: bib3
  article-title: A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity
  publication-title: Comput. Mech.
– volume: 1
  start-page: 314
  year: 2010
  end-page: 331
  ident: bib28
  article-title: A comparison of shear mechanics for the shear mechanisms for the prediction of ductile failure under low stress triaxiality
  publication-title: Int. J. Struct. Integr.
– volume: 26
  start-page: 1
  year: 1978
  end-page: 19
  ident: bib26
  article-title: A computer simulation of the tension test
  publication-title: J. Mech. Phys. Solids
– year: 2000
  ident: bib8
  publication-title: Nonlinear Finite Elements for Continua and Structures
– volume: 27
  start-page: 1
  year: 2008
  end-page: 17
  ident: bib24
  article-title: Modification of the Gurson model for shear failure
  publication-title: Eur. J. Mech. A—Solid
– volume: 105
  start-page: 97
  year: 1987
  end-page: 111
  ident: bib31
  article-title: Ductile fracture models and their potential in local approach of fracture
  publication-title: Nucl. Eng. Des.
– volume: 179
  start-page: 215
  year: 1999
  end-page: 245
  ident: bib9
  article-title: Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains
  publication-title: Comput. Method Appl. Mech.
– year: 1990
  ident: bib20
  publication-title: Plasticity Theory
– volume: 30–31
  start-page: 81
  year: 2012
  end-page: 115
  ident: bib21
  article-title: An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality
  publication-title: Int. J. Plast.
– year: 1996
  ident: bib7
  publication-title: Finite Element Procedures
– volume: 76
  start-page: 997
  year: 2009
  end-page: 1009
  ident: bib25
  article-title: A modified Gurson model and its application to punch-out experiments
  publication-title: Eng. Fract. Mech.
– volume: 19
  start-page: 259
  year: 2006
  end-page: 270
  ident: bib2
  article-title: Analysis of finite strain anisotropic elastoplastic fracture in thin plates and shells
  publication-title: J. Aerosp. Eng.
– volume: 54
  start-page: 193
  year: 2014
  end-page: 228
  ident: bib22
  article-title: An extended GTN model for ductile fracture under high and low stress triaxiality
  publication-title: Int. J. Numer. Methods Eng.
– volume: 17
  start-page: 389
  year: 1981
  end-page: 407
  ident: bib34
  article-title: Influence of voids on shear band instabilities under plane strain conditions
  publication-title: Int. J. Fract.
– reference: Wolfram Research Inc. Mathematica, 2007.
– volume: 96
  start-page: 561
  year: 2013
  end-page: 583
  ident: bib11
  article-title: A detailed description of the Gurson Tvergaard Needleman model within a mixed velocity pressure finite element formulation
  publication-title: Int. J. Numer. Methods Eng.
– volume: 5
  start-page: 185
  year: 1950
  end-page: 199
  ident: bib19
  article-title: On the nonorthogonality problem
  publication-title: Adv. Quantum Chem.
– volume: 105
  start-page: 102
  year: 1957
  end-page: 103
  ident: bib12
  article-title: Orthogonalization procedures and the localization of Wannier functions
  publication-title: Phys. Rev.
– volume: 96
  start-page: 561
  issue: 9
  year: 2013
  ident: 10.1016/j.finel.2015.05.005_bib11
  article-title: A detailed description of the Gurson Tvergaard Needleman model within a mixed velocity pressure finite element formulation
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4571
– volume: 99
  start-page: 2
  year: 1977
  ident: 10.1016/j.finel.2015.05.005_bib16
  article-title: Continuum theory of ductile rupture by void nucleation and growth
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3443401
– volume: XXI
  start-page: 337
  issue: IV
  year: 1984
  ident: 10.1016/j.finel.2015.05.005_bib5
  article-title: A stable finite element for the Stokes equations
  publication-title: Calcolo
  doi: 10.1007/BF02576171
– year: 1997
  ident: 10.1016/j.finel.2015.05.005_bib27
– volume: 5
  start-page: 185
  year: 1950
  ident: 10.1016/j.finel.2015.05.005_bib19
  article-title: On the nonorthogonality problem
  publication-title: Adv. Quantum Chem.
  doi: 10.1016/S0065-3276(08)60339-1
– year: 1996
  ident: 10.1016/j.finel.2015.05.005_bib7
– volume: 76
  start-page: 997
  year: 2009
  ident: 10.1016/j.finel.2015.05.005_bib25
  article-title: A modified Gurson model and its application to punch-out experiments
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2009.01.003
– volume: 19
  start-page: 259
  issue: 4
  year: 2006
  ident: 10.1016/j.finel.2015.05.005_bib2
  article-title: Analysis of finite strain anisotropic elastoplastic fracture in thin plates and shells
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)0893-1321(2006)19:4(259)
– volume: 29
  start-page: 483
  year: 1990
  ident: 10.1016/j.finel.2015.05.005_bib23
  article-title: Formulation of implicit finite element methods for multiplicative finite deformation plasticity
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620290304
– volume: 1
  start-page: 314
  issue: 4
  year: 2010
  ident: 10.1016/j.finel.2015.05.005_bib28
  article-title: A comparison of shear mechanics for the shear mechanisms for the prediction of ductile failure under low stress triaxiality
  publication-title: Int. J. Struct. Integr.
  doi: 10.1108/17579861011099150
– volume: 52
  start-page: 1429
  year: 2013
  ident: 10.1016/j.finel.2015.05.005_bib4
  article-title: Element-wise algorithm for modeling ductile fracture with the Rousselier yield function
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0885-0
– volume: 99
  start-page: 61
  year: 1992
  ident: 10.1016/j.finel.2015.05.005_bib32
  article-title: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/0045-7825(92)90123-2
– volume: 102
  start-page: 249
  year: 1980
  ident: 10.1016/j.finel.2015.05.005_bib15
  article-title: Void nucleation effects in biaxially stretched sheets
  publication-title: J. Mater. Process. Technol.
  doi: 10.1115/1.3224807
– volume: 27
  start-page: 1
  year: 2008
  ident: 10.1016/j.finel.2015.05.005_bib24
  article-title: Modification of the Gurson model for shear failure
  publication-title: Eur. J. Mech. A—Solid
  doi: 10.1016/j.euromechsol.2007.08.002
– year: 1996
  ident: 10.1016/j.finel.2015.05.005_bib18
– volume: 54
  start-page: 193
  year: 2014
  ident: 10.1016/j.finel.2015.05.005_bib22
  article-title: An extended GTN model for ductile fracture under high and low stress triaxiality
  publication-title: Int. J. Numer. Methods Eng.
– ident: 10.1016/j.finel.2015.05.005_bib29
– volume: 5
  start-page: 97
  year: 1996
  ident: 10.1016/j.finel.2015.05.005_bib14
  article-title: A class of smoothing functions for nonlinear and mixed complementarity problems
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/BF00249052
– volume: 179
  start-page: 215
  year: 1999
  ident: 10.1016/j.finel.2015.05.005_bib9
  article-title: Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/S0045-7825(99)00063-8
– volume: 24
  start-page: 1071
  year: 2008
  ident: 10.1016/j.finel.2015.05.005_bib6
  article-title: A new model of metal plasticity and fracture with pressure and Lode dependence
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2007.09.004
– volume: 79
  start-page: 173
  year: 1990
  ident: 10.1016/j.finel.2015.05.005_bib36
  article-title: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic–viscoplastic solids
  publication-title: Comput. Method Appl. Mech.
  doi: 10.1016/0045-7825(90)90131-5
– year: 1999
  ident: 10.1016/j.finel.2015.05.005_bib10
– volume: 105
  start-page: 102
  issue: January
  year: 1957
  ident: 10.1016/j.finel.2015.05.005_bib12
  article-title: Orthogonalization procedures and the localization of Wannier functions
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.105.102
– volume: 71
  start-page: 51
  issue: 1
  year: 1995
  ident: 10.1016/j.finel.2015.05.005_bib13
  article-title: Smoothing methods for convex inequalities and linear complementarity problems
  publication-title: Math. Program.
  doi: 10.1007/BF01592244
– volume: 26
  start-page: 1
  year: 1978
  ident: 10.1016/j.finel.2015.05.005_bib26
  article-title: A computer simulation of the tension test
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(78)90010-8
– year: 1990
  ident: 10.1016/j.finel.2015.05.005_bib20
– volume: 49
  start-page: 545
  year: 2012
  ident: 10.1016/j.finel.2015.05.005_bib3
  article-title: A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-011-0659-5
– ident: 10.1016/j.finel.2015.05.005_bib1
– year: 2000
  ident: 10.1016/j.finel.2015.05.005_bib8
– volume: 17
  start-page: 389
  issue: 4
  year: 1981
  ident: 10.1016/j.finel.2015.05.005_bib34
  article-title: Influence of voids on shear band instabilities under plane strain conditions
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00036191
– volume: 75
  start-page: 3343
  year: 2008
  ident: 10.1016/j.finel.2015.05.005_bib37
  article-title: Constitutive modeling of void shearing effect in ductile fracture of porous materials
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2007.07.022
– volume: 30–31
  start-page: 81
  year: 2012
  ident: 10.1016/j.finel.2015.05.005_bib21
  article-title: An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.10.005
– volume: 105
  start-page: 97
  year: 1987
  ident: 10.1016/j.finel.2015.05.005_bib31
  article-title: Ductile fracture models and their potential in local approach of fracture
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(87)90234-2
– year: 2000
  ident: 10.1016/j.finel.2015.05.005_bib33
  article-title: Computational Inelasticity
– volume: 58
  start-page: 1152
  year: 2010
  ident: 10.1016/j.finel.2015.05.005_bib30
  article-title: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.10.058
– volume: 18
  start-page: 312
  issue: 4
  year: 2002
  ident: 10.1016/j.finel.2015.05.005_bib17
  article-title: Multi-language and multi-environment generation of nonlinear finite element codes, Engineering with Computers
– volume: 32
  start-page: 157
  year: 1984
  ident: 10.1016/j.finel.2015.05.005_bib35
  article-title: Analysis of cup-cone fracture in a round tensile bar
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(84)90213-X
SSID ssj0005264
Score 2.111598
Snippet Two porous plasticity models, Rousselier and Gurson–Tvergaard–Needleman (GTN), are integrated with a new semi-implicit integration algorithm for finite strain...
Two porous plasticity models, Rousselier and Gurson-Tvergaard-Needleman (GTN), are integrated with a new semi-implicit integration algorithm for finite strain...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Algorithms
Constitutive integration
Evolutionary algorithms
Finite element method
Finite strains
Löwdin׳s method
Mathematical analysis
Mathematical models
Plasticity
Porous plasticity
Semi-implicit
Strain
Tensile tests
Title Semi-implicit finite strain constitutive integration of porous plasticity models
URI https://dx.doi.org/10.1016/j.finel.2015.05.005
https://www.proquest.com/docview/1753487705
Volume 104
WOSCitedRecordID wos000358264300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVZuoftYR_dxrovNNjb5iDbsiQ_htKy7aEE0kHejCzL4NK6IUlLGey_70pXdtyFlW0wCCYRsaLoXl8dSeceEfIht6KsY8Yg-mkTcW4kPFIsj3QmqkRak8CN_rAJeXKiFot8Nhr96HJhrs9l26qbm3z5X00NZWBslzr7F-buK4UCeA9GhyuYHa5_ZPi5vWiixhPFG6e75EClSwnRnnEeuAGOL9QpRQTICEDc0WGXAKcd0xrAuT8lZz2Er8dYm0XOuafS6k7VxK3AV7f4INOVbTBfbDbZ7ieV5vsV0rP7wkPcrl9rd1r5x7n_FHv_mgxXJWKvZop5mbhUtpMug6uXQkH4RUrmxGLEVTKJRI7Zz31IZnwQVFEZKwzPKOq7E_hxDeJsAr1q3Y5SnHlBVpZtx7mefTh37XDNiDOPmNN7ZC-RWa7GZG_65WjxdcAREkEcHtvdyVZ5guDOT_0O2vwyyHvkcvqEPApTDjpFV3lKRrbdJ4_D9IOG4L7eJw8H2pTPyOyWH1H0I4p-RId-RAd-RC9rin5Et35E0Y-ek2_HR6eHn6Nw_EZk0lRsIi7qNOW5TFUlamW00ZZbpSuhdV4DpElid25LnBsj67pMMstkxWqlDE-kgcCQviDj9rK1Lwktua2MkikHQM9LgLSCV6pSQjK3Al3ZA5J0PVeYoE3v_s950ZEQzwrf3YXr7oLBi2UH5FN_0xKlWe7-uuhMUgR0iaixAB-6-8b3nQELiL1uQ023FnqycCq3MOGXLHv1r5W_Jg-2j88bMt6sruxbct9cb5r16l3wx59ppqxM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-implicit+finite+strain+constitutive+integration+of+porous+plasticity+models&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Areias%2C+P.&rft.au=Rabczuk%2C+T.&rft.au=C%C3%A9sar+de+S%C3%A1%2C+J.&rft.date=2015-10-15&rft.pub=Elsevier+B.V&rft.issn=0168-874X&rft.eissn=1872-6925&rft.volume=104&rft.spage=41&rft.epage=55&rft_id=info:doi/10.1016%2Fj.finel.2015.05.005&rft.externalDocID=S0168874X15000803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon