Optimal Power Allocation in Downlink Multicarrier NOMA Systems: Theory and Fast Algorithms
In this work, we propose globally optimal power allocation strategies to maximize the users sum-rate (SR), and system energy efficiency (EE) in the downlink of single-cell multicarrier non-orthogonal multiple access (MC-NOMA) systems. Each NOMA cluster includes a set of users in which the well-known...
Uloženo v:
| Vydáno v: | IEEE journal on selected areas in communications Ročník 40; číslo 4; s. 1162 - 1189 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0733-8716, 1558-0008 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work, we propose globally optimal power allocation strategies to maximize the users sum-rate (SR), and system energy efficiency (EE) in the downlink of single-cell multicarrier non-orthogonal multiple access (MC-NOMA) systems. Each NOMA cluster includes a set of users in which the well-known superposition coding (SC) combined with successive interference cancellation (SIC) technique is applied among them. By obtaining the closed-form expression of intra-cluster power allocation, we show that MC-NOMA can be equivalently transformed to a virtual orthogonal multiple access (OMA) system, where the effective channel gain of these virtual OMA users is obtained in closed-form. Then, the SR and EE maximization problems are solved by using very fast water-filling and Dinkelbach algorithms, respectively. The equivalent transformation of MC-NOMA to the virtual OMA system brings new theoretical insights, which are discussed throughout the paper. The extensions of our analyses to other scenarios, such as considering users rate fairness, admission control, long-term performance, and a number of future next-generation multiple access (NGMA) schemes enabling recent advanced technologies, e.g., reconfigurable intelligent surfaces are discussed. Extensive numerical results are provided to demonstrate the performance gaps among single-carrier NOMA (SC-NOMA), OMA-NOMA, and OMA. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0733-8716 1558-0008 |
| DOI: | 10.1109/JSAC.2022.3143237 |