The optimal geometry of Lennard-Jones clusters: 148–309
This paper deals with the global optimization problem of determining the n-atom cluster configuration that yields the minimum Lennard-Jones potential energy. To approach this problem we propose a genetic algorithm combined with a stochastic search procedure on icosahedral lattices. Although the pote...
Uloženo v:
| Vydáno v: | Computer physics communications Ročník 123; číslo 1; s. 87 - 96 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.12.1999
Elsevier Science |
| Témata: | |
| ISSN: | 0010-4655, 1879-2944 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper deals with the global optimization problem of determining the
n-atom cluster configuration that yields the minimum Lennard-Jones potential energy. To approach this problem we propose a genetic algorithm combined with a stochastic search procedure on icosahedral lattices. Although the potentials obtained with our method for
n=148,…,309 are in fact only upper bounds for the global minima, we believe that most of these upper bounds are tight. We provide a geometrical description of the optimal configurations found, whose structures are either icosahedral or Marks decahedral in character. Also, we were able to discover a novel morphology – called
FD here – for Lennard-Jones atomic clusters. |
|---|---|
| ISSN: | 0010-4655 1879-2944 |
| DOI: | 10.1016/S0010-4655(99)00259-3 |