A Methodology and Simulation-based Toolchain for Estimating Deployment Performance of Smart Collective Services at the Edge
Research trends are pushing artificial intelligence (AI) across the IoT-Edge-Fog-Cloud continuum, to enable effective data analytics, decision making, as well as efficient use of resources for QoS targets. Approaches for collective adaptive systems engineering, such as aggregate computing, provide d...
Gespeichert in:
| Veröffentlicht in: | IEEE internet of things journal Jg. 9; H. 20; S. 1 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
15.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2327-4662, 2327-4662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Research trends are pushing artificial intelligence (AI) across the IoT-Edge-Fog-Cloud continuum, to enable effective data analytics, decision making, as well as efficient use of resources for QoS targets. Approaches for collective adaptive systems engineering, such as aggregate computing, provide declarative programming models and tools for dealing with the uncertainty and the complexity that may arise from scale, heterogeneity, and dynamicity. Crucially, aggregate computing architecture allows for "pulverisation": applications can be decomposed into many deployable micro-modules that can be spread across the ICT infrastructure, thus allowing multiple potential deployment configurations for the same application logic. This article studies the deployment architecture of aggregate-based edge services and its implications in terms of performance and cost. The goal is to provide methodological guidelines and a model-based toolchain for the generation and simulation-based evaluation of potential deployments. First, we address this subject methodologically by proposing an approach based on deployment code generators and a simulation phase whose obtained solutions are assessed with respect to their performance and costs. We then tailor this approach to aggregate computing applications deployed onto an IoT-Edge-Fog-Cloud infrastructure, and we develop a corresponding toolchain based on Protelis and EdgeCloudSim. Finally, we evaluate the approach and tools through a case study of edge multimedia streaming, where the edge ecosystem exhibits intelligence by self-organising into clusters to promote load-balancing in large-scale dynamic settings. |
|---|---|
| AbstractList | Research trends are pushing artificial intelligence (AI) across the IoT-Edge-Fog-Cloud continuum, to enable effective data analytics, decision making, as well as efficient use of resources for QoS targets. Approaches for collective adaptive systems engineering, such as aggregate computing, provide declarative programming models and tools for dealing with the uncertainty and the complexity that may arise from scale, heterogeneity, and dynamicity. Crucially, aggregate computing architecture allows for "pulverisation": applications can be decomposed into many deployable micro-modules that can be spread across the ICT infrastructure, thus allowing multiple potential deployment configurations for the same application logic. This article studies the deployment architecture of aggregate-based edge services and its implications in terms of performance and cost. The goal is to provide methodological guidelines and a model-based toolchain for the generation and simulation-based evaluation of potential deployments. First, we address this subject methodologically by proposing an approach based on deployment code generators and a simulation phase whose obtained solutions are assessed with respect to their performance and costs. We then tailor this approach to aggregate computing applications deployed onto an IoT-Edge-Fog-Cloud infrastructure, and we develop a corresponding toolchain based on Protelis and EdgeCloudSim. Finally, we evaluate the approach and tools through a case study of edge multimedia streaming, where the edge ecosystem exhibits intelligence by self-organising into clusters to promote load-balancing in large-scale dynamic settings. Research trends are pushing artificial intelligence (AI) across the Internet of Things (IoT)–edge–fog–cloud continuum to enable effective data analytics, decision making, as well as the efficient use of resources for QoS targets. Approaches for collective adaptive systems (CASs) engineering, such as aggregate computing, provide declarative programming models and tools for dealing with the uncertainty and the complexity that may arise from scale, heterogeneity, and dynamicity. Crucially, aggregate computing architecture allows for “pulverization”: applications can be decomposed into many deployable micromodules that can be spread across the ICT infrastructure, thus allowing multiple potential deployment configurations for the same application logic. This article studies the deployment architecture of aggregate-based edge services and its implications in terms of performance and cost. The goal is to provide methodological guidelines and a model-based toolchain for the generation and simulation-based evaluation of potential deployments. First, we address this subject methodologically by proposing an approach based on deployment code generators and a simulation phase whose obtained solutions are assessed with respect to their performance and costs. We then tailor this approach to aggregate computing applications deployed onto an IoT–edge–fog–cloud infrastructure, and we develop a corresponding toolchain based on Protelis and EdgeCloudSim. Finally, we evaluate the approach and tools through a case study of edge multimedia streaming, where the edge ecosystem exhibits intelligence by self-organizing into clusters to promote load balancing in large-scale dynamic settings. |
| Author | Placuzzi, Andrea Casadei, Roberto Fortino, Giancarlo Savaglio, Claudio Pianini, Danilo Viroli, Mirko |
| Author_xml | – sequence: 1 givenname: Roberto surname: Casadei fullname: Casadei, Roberto organization: Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-Università di Bologna, 47522 Cesena, FC, Italy – sequence: 2 givenname: Giancarlo surname: Fortino fullname: Fortino, Giancarlo organization: Department of Informatics, Modeling, Electronics and Systems (DIMES), Università della Calabria, 87036 Arcavacata, Rende CS, Italy – sequence: 3 givenname: Danilo surname: Pianini fullname: Pianini, Danilo organization: Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-Università di Bologna, 47522 Cesena, FC, Italy – sequence: 4 givenname: Andrea surname: Placuzzi fullname: Placuzzi, Andrea organization: Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-Università di Bologna, 47522 Cesena, FC, Italy – sequence: 5 givenname: Claudio surname: Savaglio fullname: Savaglio, Claudio organization: Institute for High Performance Computing and Networking (ICAR), National Research Council, 87036 Arcavacata, Rende CS, Italy, Italy – sequence: 6 givenname: Mirko surname: Viroli fullname: Viroli, Mirko organization: Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-Università di Bologna, 47522 Cesena, FC, Italy |
| BookMark | eNp9kF1LwzAUhoNMcH78APEm4HVnvtq0l2POLxSFzeuSpqdbRpvMJBOGf97OiYgXXp0D7_ucA88xGlhnAaFzSkaUkuLq4f55PmKEsRGnkglJDtCQcSYTkWVs8Gs_QmchrAghPZbSIhuijzF-grh0tWvdYouVrfHMdJtWReNsUqkANZ471-qlMhY3zuNpiKbrY7vA17Bu3bYDG_EL-D7slNWAXYNnnfIRT1zbgo7mHfAM_LvRELCKOC4BT-sFnKLDRrUBzr7nCXq9mc4nd8nj8-39ZPyYaM6zmHBFRa6B8ErndV2ltE6lFpBTlUpepClUmhVScllVtNKkyZtKCMKhyISQknJ-gi73d9fevW0gxHLlNt72L0smGUtFUTDRt-S-pb0LwUNTahO_NESvTFtSUu5klzvZ5U52-S27J-kfcu17RX77L3OxZwwA_PQLmeWUSv4JgemNDw |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1016_j_procs_2024_01_039 crossref_primary_10_1016_j_cose_2023_103278 crossref_primary_10_3390_bdcc7010044 crossref_primary_10_1016_j_procs_2024_06_027 crossref_primary_10_1109_ACCESS_2023_3277429 crossref_primary_10_3389_frobt_2024_1407421 crossref_primary_10_3390_jsan12020022 crossref_primary_10_3390_computers14060217 crossref_primary_10_1016_j_future_2024_07_042 crossref_primary_10_1145_3712004 crossref_primary_10_3390_bdcc7020068 crossref_primary_10_1016_j_jss_2024_111976 crossref_primary_10_1016_j_iot_2025_101548 crossref_primary_10_1016_j_iot_2024_101412 crossref_primary_10_1016_j_iot_2024_101436 |
| Cites_doi | 10.1007/978-1-4842-5398-4_4 10.1016/j.pmcj.2020.101316 10.3390/fi12110203 10.3403/30279960 10.1007/978-3-642-12331-3_3 10.1109/WSC.2017.8248208 10.1145/2695664.2695913 10.1109/ACCESS.2019.2928582 10.1002/spe.2939 10.1109/WWOS.1992.275671 10.1016/j.future.2020.02.047 10.1145/3285956 10.1016/j.future.2020.07.032 10.1002/9781119525080.ch9 10.1109/TSMC.2020.3042898 10.1057/jos.2012.27 10.1109/FMEC.2019.8795355 10.1109/ACCESS.2019.2915020 10.1109/SASO.2017.18 10.1162/artl.2007.13.3.303 10.1016/j.future.2018.09.005 10.4018/978-1-4666-2092-6.ch016 10.1007/s10009-020-00554-3 10.1109/TCC.2021.3097879 10.1109/ICCCI.2015.7218076 10.1145/3155337 10.1109/MC.2015.261 10.1016/j.jnca.2014.09.009 10.1109/ICSE-C.2017.162 10.1007/978-3-642-12331-3_2 10.1109/JPROC.2019.2918951 10.1109/SCC.2019.00019 10.1002/spe.995 10.1145/958491.958506 10.1145/1869542.1869625 10.1109/MS.2006.114 10.1016/j.engappai.2020.104081 10.1109/JIOT.2016.2565516 10.1007/s10009-020-00565-0 10.1145/1122012.1122013 10.1109/MCOM.2017.1700328 10.1109/JIOT.2020.2984887 10.1145/1772954.1772965 10.1016/j.jlamp.2019.100486 10.1109/JIOT.2021.3101449 10.15439/2016f407 10.1007/s12652-018-0785-4 10.1109/SASO.2015.19 10.1007/978-3-030-61470-6_21 10.1109/WSC.1994.717419 10.1002/ett.3493 10.1016/j.ins.2019.05.058 10.1007/978-3-030-30985-5_3 10.1145/3179994 10.1109/GLOCOMW.2018.8644518 10.3390/fi11110235 10.3390/fi11030055 10.1109/TNSE.2020.3008381 10.1109/WAINA.2017.113 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2022.3172470 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JIOT_2022_3172470 9768117 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministero dellIstruzione dellUniversit e della Ricerca grantid: PRIN 2017 N. 2017KRC7KT "Fluidware" |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c336t-3a148ce03bc8ddb51d57c4e81a573955ebc297737bb1bc0f8fb4403e964477133 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865097300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2327-4662 |
| IngestDate | Sun Nov 09 08:04:02 EST 2025 Sat Nov 29 06:17:06 EST 2025 Tue Nov 18 22:20:16 EST 2025 Wed Aug 27 02:29:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-3a148ce03bc8ddb51d57c4e81a573955ebc297737bb1bc0f8fb4403e964477133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9149-949X 0000-0002-8392-5409 0000-0002-4039-891X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9768117 |
| PQID | 2722549924 |
| PQPubID | 2040421 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9768117 crossref_citationtrail_10_1109_JIOT_2022_3172470 crossref_primary_10_1109_JIOT_2022_3172470 proquest_journals_2722549924 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-15 |
| PublicationDateYYYYMMDD | 2022-10-15 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Varga (ref32) 2010 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 Placuzzi (ref52) 2021 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 Pianini (ref59) 2021 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref58 doi: 10.1007/978-1-4842-5398-4_4 – ident: ref4 doi: 10.1016/j.pmcj.2020.101316 – ident: ref10 doi: 10.3390/fi12110203 – ident: ref40 doi: 10.3403/30279960 – start-page: 35 volume-title: Modeling and Tools for Network Simulation year: 2010 ident: ref32 article-title: OMNeT doi: 10.1007/978-3-642-12331-3_3 – ident: ref37 doi: 10.1109/WSC.2017.8248208 – ident: ref13 doi: 10.1145/2695664.2695913 – ident: ref48 doi: 10.1109/ACCESS.2019.2928582 – ident: ref41 doi: 10.1002/spe.2939 – ident: ref56 doi: 10.1109/WWOS.1992.275671 – ident: ref42 doi: 10.1016/j.future.2020.02.047 – ident: ref54 doi: 10.1145/3285956 – ident: ref6 doi: 10.1016/j.future.2020.07.032 – ident: ref49 doi: 10.1002/9781119525080.ch9 – ident: ref11 doi: 10.1109/TSMC.2020.3042898 – ident: ref29 doi: 10.1057/jos.2012.27 – ident: ref5 doi: 10.1109/FMEC.2019.8795355 – ident: ref51 doi: 10.1109/ACCESS.2019.2915020 – ident: ref25 doi: 10.1109/SASO.2017.18 – volume-title: DanySK/experiment-2019-FGCS-self-integration: 1.0.0 year: 2021 ident: ref59 – ident: ref28 doi: 10.1162/artl.2007.13.3.303 – ident: ref7 doi: 10.1016/j.future.2018.09.005 – ident: ref22 doi: 10.4018/978-1-4666-2092-6.ch016 – ident: ref18 doi: 10.1007/s10009-020-00554-3 – ident: ref46 doi: 10.1109/TCC.2021.3097879 – ident: ref60 doi: 10.1109/ICCCI.2015.7218076 – ident: ref17 doi: 10.1145/3155337 – ident: ref15 doi: 10.1109/MC.2015.261 – ident: ref26 doi: 10.1016/j.jnca.2014.09.009 – year: 2021 ident: ref52 publication-title: aPlacuzzi/experiment-2021-Pulverization-EdgeCloudSim: Release 0.1.0-2021-04-29T163149 – ident: ref12 doi: 10.1109/ICSE-C.2017.162 – ident: ref33 doi: 10.1007/978-3-642-12331-3_2 – ident: ref1 doi: 10.1109/JPROC.2019.2918951 – ident: ref9 doi: 10.1109/SCC.2019.00019 – ident: ref35 doi: 10.1002/spe.995 – ident: ref34 doi: 10.1145/958491.958506 – ident: ref55 doi: 10.1145/1869542.1869625 – ident: ref53 doi: 10.1109/MS.2006.114 – ident: ref3 doi: 10.1016/j.engappai.2020.104081 – ident: ref45 doi: 10.1109/JIOT.2016.2565516 – ident: ref21 doi: 10.1007/s10009-020-00565-0 – ident: ref27 doi: 10.1145/1122012.1122013 – ident: ref50 doi: 10.1109/MCOM.2017.1700328 – ident: ref2 doi: 10.1109/JIOT.2020.2984887 – ident: ref57 doi: 10.1145/1772954.1772965 – ident: ref23 doi: 10.1016/j.jlamp.2019.100486 – ident: ref44 doi: 10.1109/JIOT.2021.3101449 – ident: ref30 doi: 10.15439/2016f407 – ident: ref43 doi: 10.1007/s12652-018-0785-4 – ident: ref20 doi: 10.1109/SASO.2015.19 – ident: ref24 doi: 10.1007/978-3-030-61470-6_21 – ident: ref36 doi: 10.1109/WSC.1994.717419 – ident: ref14 doi: 10.1002/ett.3493 – ident: ref8 doi: 10.1016/j.ins.2019.05.058 – ident: ref16 doi: 10.1007/978-3-030-30985-5_3 – ident: ref19 doi: 10.1145/3179994 – ident: ref31 doi: 10.1109/GLOCOMW.2018.8644518 – ident: ref38 doi: 10.3390/fi11110235 – ident: ref39 doi: 10.3390/fi11030055 – ident: ref47 doi: 10.1109/TNSE.2020.3008381 – ident: ref61 doi: 10.1109/WAINA.2017.113 |
| SSID | ssj0001105196 |
| Score | 2.4301312 |
| Snippet | Research trends are pushing artificial intelligence (AI) across the IoT-Edge-Fog-Cloud continuum, to enable effective data analytics, decision making, as well... Research trends are pushing artificial intelligence (AI) across the Internet of Things (IoT)–edge–fog–cloud continuum to enable effective data analytics,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive systems Aggregates Artificial intelligence Cloud Services Collective Services Computational modeling Computer architecture Costs Cyber-Physical Systems Decision analysis Decision making Declarative programming Deployment methodology Edge Intelligence Heterogeneity Infrastructure Internet of Things Micromodules Mobile and Ubiquitous Systems Multimedia Programming Pulverisable Architectures Service Middleware and Platform Simulation |
| Title | A Methodology and Simulation-based Toolchain for Estimating Deployment Performance of Smart Collective Services at the Edge |
| URI | https://ieeexplore.ieee.org/document/9768117 https://www.proquest.com/docview/2722549924 |
| Volume | 9 |
| WOSCitedRecordID | wos000865097300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sePDiq4r1xRw8idFsHt3kKFpR8VGwgreQfaQW2kRs6sU_7852WwVF8JaE3STw7e5832wmH8ChMCirtoy9IlYkUKK2l6rQ96RQOk-LMGfSIn3L7--T5-e0uwDH81oYrbX9-Eyf0KHdy1eVnFCq7NSETqqLbECDcz6t1frKpzAiI223ccn89PTm-qFnBGAQGF3Kg4jsiL-FHuul8mMBtlHlcvV_77MGK4494tkU7nVY0OUGrM6cGdBN1CZ8nOGdtYa2SXPMS4WPg5Fz6vIocinsVdVQvuSDEg1vxY6Z6kReyz5eaDIBpkdj96usAKsCH0dmoKHNNdhlEmcrDeY1GiaJHdXXm_B02emdX3nOZsGTYdiuPYNHlJBtmJCJUiJmKuYy0gnLY9rFi7WQgWGJIReCCekXSSGiyA91aqgUJ427BYtlVeptQCGUEWxaSZ8VUW54O9cxM9cSc2aohG6BP0Mgk-4f5GSFMcysFvHTjEDLCLTMgdaCo3mX1-kPOP5q3CSU5g0dQC3Ym8GcuSk6zgIeWHEcRDu_99qFZbo3BSoW78Fi_TbR-7Ak3-vB-O3Ajr5PKJ3agw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gV58i-tzDp7EatMm2_YouuJjXQVX8FaaR3VBW9HVi3_eTDa7CorgrS0JLXxJ5vsmnXwAO9KirJtKBKXQJFB4M8h0HAZKalNkZVww5ZBuJ51OeneXXY_B3qgWxhjjfj4z-3Tp9vJ1rd4oVXZgQyfVRY7DpOA8YoNqra-MCiM60vRblyzMDs7PrrpWAkaRVaZJxMmQ-FvwcW4qP5ZgF1dO5v73RfMw6_kjHg4AX4AxUy3C3NCbAf1UXYKPQ7x05tAubY5FpfGm9-S9ugKKXRq7df2oHopehZa5YstOdqKv1T0eG7IBplfj9VdhAdYl3jzZoYYu2-AWShyuNVj00XJJbOl7swy3J63u0WngjRYCFcfNfmAR4SkZh0mVai0F0yJR3KSsELSPJ4xUkeWJcSIlkyos01JyHsYms2QqIZW7AhNVXZlVQCm1lWxGq5CVvLDMPTGC2WepvbNkwjQgHCKQK38KOZlhPOZOjYRZTqDlBFruQWvA7qjL8-AIjr8aLxFKo4YeoAZsDGHO_SR9zaMkcvI44mu_99qG6dPuZTtvn3Uu1mGG3kNhi4kNmOi_vJlNmFLv_d7ry5YbiZ-qJN3K |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Methodology+and+Simulation-based+Toolchain+for+Estimating+Deployment+Performance+of+Smart+Collective+Services+at+the+Edge&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Casadei%2C+Roberto&rft.au=Fortino%2C+Giancarlo&rft.au=Pianini%2C+Danilo&rft.au=Placuzzi%2C+Andrea&rft.date=2022-10-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJIOT.2022.3172470&rft.externalDocID=9768117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |