A Methodology and Simulation-based Toolchain for Estimating Deployment Performance of Smart Collective Services at the Edge

Research trends are pushing artificial intelligence (AI) across the IoT-Edge-Fog-Cloud continuum, to enable effective data analytics, decision making, as well as efficient use of resources for QoS targets. Approaches for collective adaptive systems engineering, such as aggregate computing, provide d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal Jg. 9; H. 20; S. 1
Hauptverfasser: Casadei, Roberto, Fortino, Giancarlo, Pianini, Danilo, Placuzzi, Andrea, Savaglio, Claudio, Viroli, Mirko
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 15.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2327-4662, 2327-4662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Research trends are pushing artificial intelligence (AI) across the IoT-Edge-Fog-Cloud continuum, to enable effective data analytics, decision making, as well as efficient use of resources for QoS targets. Approaches for collective adaptive systems engineering, such as aggregate computing, provide declarative programming models and tools for dealing with the uncertainty and the complexity that may arise from scale, heterogeneity, and dynamicity. Crucially, aggregate computing architecture allows for "pulverisation": applications can be decomposed into many deployable micro-modules that can be spread across the ICT infrastructure, thus allowing multiple potential deployment configurations for the same application logic. This article studies the deployment architecture of aggregate-based edge services and its implications in terms of performance and cost. The goal is to provide methodological guidelines and a model-based toolchain for the generation and simulation-based evaluation of potential deployments. First, we address this subject methodologically by proposing an approach based on deployment code generators and a simulation phase whose obtained solutions are assessed with respect to their performance and costs. We then tailor this approach to aggregate computing applications deployed onto an IoT-Edge-Fog-Cloud infrastructure, and we develop a corresponding toolchain based on Protelis and EdgeCloudSim. Finally, we evaluate the approach and tools through a case study of edge multimedia streaming, where the edge ecosystem exhibits intelligence by self-organising into clusters to promote load-balancing in large-scale dynamic settings.
AbstractList Research trends are pushing artificial intelligence (AI) across the IoT-Edge-Fog-Cloud continuum, to enable effective data analytics, decision making, as well as efficient use of resources for QoS targets. Approaches for collective adaptive systems engineering, such as aggregate computing, provide declarative programming models and tools for dealing with the uncertainty and the complexity that may arise from scale, heterogeneity, and dynamicity. Crucially, aggregate computing architecture allows for "pulverisation": applications can be decomposed into many deployable micro-modules that can be spread across the ICT infrastructure, thus allowing multiple potential deployment configurations for the same application logic. This article studies the deployment architecture of aggregate-based edge services and its implications in terms of performance and cost. The goal is to provide methodological guidelines and a model-based toolchain for the generation and simulation-based evaluation of potential deployments. First, we address this subject methodologically by proposing an approach based on deployment code generators and a simulation phase whose obtained solutions are assessed with respect to their performance and costs. We then tailor this approach to aggregate computing applications deployed onto an IoT-Edge-Fog-Cloud infrastructure, and we develop a corresponding toolchain based on Protelis and EdgeCloudSim. Finally, we evaluate the approach and tools through a case study of edge multimedia streaming, where the edge ecosystem exhibits intelligence by self-organising into clusters to promote load-balancing in large-scale dynamic settings.
Research trends are pushing artificial intelligence (AI) across the Internet of Things (IoT)–edge–fog–cloud continuum to enable effective data analytics, decision making, as well as the efficient use of resources for QoS targets. Approaches for collective adaptive systems (CASs) engineering, such as aggregate computing, provide declarative programming models and tools for dealing with the uncertainty and the complexity that may arise from scale, heterogeneity, and dynamicity. Crucially, aggregate computing architecture allows for “pulverization”: applications can be decomposed into many deployable micromodules that can be spread across the ICT infrastructure, thus allowing multiple potential deployment configurations for the same application logic. This article studies the deployment architecture of aggregate-based edge services and its implications in terms of performance and cost. The goal is to provide methodological guidelines and a model-based toolchain for the generation and simulation-based evaluation of potential deployments. First, we address this subject methodologically by proposing an approach based on deployment code generators and a simulation phase whose obtained solutions are assessed with respect to their performance and costs. We then tailor this approach to aggregate computing applications deployed onto an IoT–edge–fog–cloud infrastructure, and we develop a corresponding toolchain based on Protelis and EdgeCloudSim. Finally, we evaluate the approach and tools through a case study of edge multimedia streaming, where the edge ecosystem exhibits intelligence by self-organizing into clusters to promote load balancing in large-scale dynamic settings.
Author Placuzzi, Andrea
Casadei, Roberto
Fortino, Giancarlo
Savaglio, Claudio
Pianini, Danilo
Viroli, Mirko
Author_xml – sequence: 1
  givenname: Roberto
  surname: Casadei
  fullname: Casadei, Roberto
  organization: Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-Università di Bologna, 47522 Cesena, FC, Italy
– sequence: 2
  givenname: Giancarlo
  surname: Fortino
  fullname: Fortino, Giancarlo
  organization: Department of Informatics, Modeling, Electronics and Systems (DIMES), Università della Calabria, 87036 Arcavacata, Rende CS, Italy
– sequence: 3
  givenname: Danilo
  surname: Pianini
  fullname: Pianini, Danilo
  organization: Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-Università di Bologna, 47522 Cesena, FC, Italy
– sequence: 4
  givenname: Andrea
  surname: Placuzzi
  fullname: Placuzzi, Andrea
  organization: Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-Università di Bologna, 47522 Cesena, FC, Italy
– sequence: 5
  givenname: Claudio
  surname: Savaglio
  fullname: Savaglio, Claudio
  organization: Institute for High Performance Computing and Networking (ICAR), National Research Council, 87036 Arcavacata, Rende CS, Italy, Italy
– sequence: 6
  givenname: Mirko
  surname: Viroli
  fullname: Viroli, Mirko
  organization: Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-Università di Bologna, 47522 Cesena, FC, Italy
BookMark eNp9kF1LwzAUhoNMcH78APEm4HVnvtq0l2POLxSFzeuSpqdbRpvMJBOGf97OiYgXXp0D7_ucA88xGlhnAaFzSkaUkuLq4f55PmKEsRGnkglJDtCQcSYTkWVs8Gs_QmchrAghPZbSIhuijzF-grh0tWvdYouVrfHMdJtWReNsUqkANZ471-qlMhY3zuNpiKbrY7vA17Bu3bYDG_EL-D7slNWAXYNnnfIRT1zbgo7mHfAM_LvRELCKOC4BT-sFnKLDRrUBzr7nCXq9mc4nd8nj8-39ZPyYaM6zmHBFRa6B8ErndV2ltE6lFpBTlUpepClUmhVScllVtNKkyZtKCMKhyISQknJ-gi73d9fevW0gxHLlNt72L0smGUtFUTDRt-S-pb0LwUNTahO_NESvTFtSUu5klzvZ5U52-S27J-kfcu17RX77L3OxZwwA_PQLmeWUSv4JgemNDw
CODEN IITJAU
CitedBy_id crossref_primary_10_1016_j_procs_2024_01_039
crossref_primary_10_1016_j_cose_2023_103278
crossref_primary_10_3390_bdcc7010044
crossref_primary_10_1016_j_procs_2024_06_027
crossref_primary_10_1109_ACCESS_2023_3277429
crossref_primary_10_3389_frobt_2024_1407421
crossref_primary_10_3390_jsan12020022
crossref_primary_10_3390_computers14060217
crossref_primary_10_1016_j_future_2024_07_042
crossref_primary_10_1145_3712004
crossref_primary_10_3390_bdcc7020068
crossref_primary_10_1016_j_jss_2024_111976
crossref_primary_10_1016_j_iot_2025_101548
crossref_primary_10_1016_j_iot_2024_101412
crossref_primary_10_1016_j_iot_2024_101436
Cites_doi 10.1007/978-1-4842-5398-4_4
10.1016/j.pmcj.2020.101316
10.3390/fi12110203
10.3403/30279960
10.1007/978-3-642-12331-3_3
10.1109/WSC.2017.8248208
10.1145/2695664.2695913
10.1109/ACCESS.2019.2928582
10.1002/spe.2939
10.1109/WWOS.1992.275671
10.1016/j.future.2020.02.047
10.1145/3285956
10.1016/j.future.2020.07.032
10.1002/9781119525080.ch9
10.1109/TSMC.2020.3042898
10.1057/jos.2012.27
10.1109/FMEC.2019.8795355
10.1109/ACCESS.2019.2915020
10.1109/SASO.2017.18
10.1162/artl.2007.13.3.303
10.1016/j.future.2018.09.005
10.4018/978-1-4666-2092-6.ch016
10.1007/s10009-020-00554-3
10.1109/TCC.2021.3097879
10.1109/ICCCI.2015.7218076
10.1145/3155337
10.1109/MC.2015.261
10.1016/j.jnca.2014.09.009
10.1109/ICSE-C.2017.162
10.1007/978-3-642-12331-3_2
10.1109/JPROC.2019.2918951
10.1109/SCC.2019.00019
10.1002/spe.995
10.1145/958491.958506
10.1145/1869542.1869625
10.1109/MS.2006.114
10.1016/j.engappai.2020.104081
10.1109/JIOT.2016.2565516
10.1007/s10009-020-00565-0
10.1145/1122012.1122013
10.1109/MCOM.2017.1700328
10.1109/JIOT.2020.2984887
10.1145/1772954.1772965
10.1016/j.jlamp.2019.100486
10.1109/JIOT.2021.3101449
10.15439/2016f407
10.1007/s12652-018-0785-4
10.1109/SASO.2015.19
10.1007/978-3-030-61470-6_21
10.1109/WSC.1994.717419
10.1002/ett.3493
10.1016/j.ins.2019.05.058
10.1007/978-3-030-30985-5_3
10.1145/3179994
10.1109/GLOCOMW.2018.8644518
10.3390/fi11110235
10.3390/fi11030055
10.1109/TNSE.2020.3008381
10.1109/WAINA.2017.113
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2022.3172470
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 1
ExternalDocumentID 10_1109_JIOT_2022_3172470
9768117
Genre orig-research
GrantInformation_xml – fundername: Ministero dellIstruzione dellUniversit e della Ricerca
  grantid: PRIN 2017 N. 2017KRC7KT "Fluidware"
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-3a148ce03bc8ddb51d57c4e81a573955ebc297737bb1bc0f8fb4403e964477133
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865097300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2327-4662
IngestDate Sun Nov 09 08:04:02 EST 2025
Sat Nov 29 06:17:06 EST 2025
Tue Nov 18 22:20:16 EST 2025
Wed Aug 27 02:29:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-3a148ce03bc8ddb51d57c4e81a573955ebc297737bb1bc0f8fb4403e964477133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9149-949X
0000-0002-8392-5409
0000-0002-4039-891X
OpenAccessLink https://ieeexplore.ieee.org/document/9768117
PQID 2722549924
PQPubID 2040421
PageCount 1
ParticipantIDs ieee_primary_9768117
crossref_citationtrail_10_1109_JIOT_2022_3172470
crossref_primary_10_1109_JIOT_2022_3172470
proquest_journals_2722549924
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Varga (ref32) 2010
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
Placuzzi (ref52) 2021
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
Pianini (ref59) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref58
  doi: 10.1007/978-1-4842-5398-4_4
– ident: ref4
  doi: 10.1016/j.pmcj.2020.101316
– ident: ref10
  doi: 10.3390/fi12110203
– ident: ref40
  doi: 10.3403/30279960
– start-page: 35
  volume-title: Modeling and Tools for Network Simulation
  year: 2010
  ident: ref32
  article-title: OMNeT
  doi: 10.1007/978-3-642-12331-3_3
– ident: ref37
  doi: 10.1109/WSC.2017.8248208
– ident: ref13
  doi: 10.1145/2695664.2695913
– ident: ref48
  doi: 10.1109/ACCESS.2019.2928582
– ident: ref41
  doi: 10.1002/spe.2939
– ident: ref56
  doi: 10.1109/WWOS.1992.275671
– ident: ref42
  doi: 10.1016/j.future.2020.02.047
– ident: ref54
  doi: 10.1145/3285956
– ident: ref6
  doi: 10.1016/j.future.2020.07.032
– ident: ref49
  doi: 10.1002/9781119525080.ch9
– ident: ref11
  doi: 10.1109/TSMC.2020.3042898
– ident: ref29
  doi: 10.1057/jos.2012.27
– ident: ref5
  doi: 10.1109/FMEC.2019.8795355
– ident: ref51
  doi: 10.1109/ACCESS.2019.2915020
– ident: ref25
  doi: 10.1109/SASO.2017.18
– volume-title: DanySK/experiment-2019-FGCS-self-integration: 1.0.0
  year: 2021
  ident: ref59
– ident: ref28
  doi: 10.1162/artl.2007.13.3.303
– ident: ref7
  doi: 10.1016/j.future.2018.09.005
– ident: ref22
  doi: 10.4018/978-1-4666-2092-6.ch016
– ident: ref18
  doi: 10.1007/s10009-020-00554-3
– ident: ref46
  doi: 10.1109/TCC.2021.3097879
– ident: ref60
  doi: 10.1109/ICCCI.2015.7218076
– ident: ref17
  doi: 10.1145/3155337
– ident: ref15
  doi: 10.1109/MC.2015.261
– ident: ref26
  doi: 10.1016/j.jnca.2014.09.009
– year: 2021
  ident: ref52
  publication-title: aPlacuzzi/experiment-2021-Pulverization-EdgeCloudSim: Release 0.1.0-2021-04-29T163149
– ident: ref12
  doi: 10.1109/ICSE-C.2017.162
– ident: ref33
  doi: 10.1007/978-3-642-12331-3_2
– ident: ref1
  doi: 10.1109/JPROC.2019.2918951
– ident: ref9
  doi: 10.1109/SCC.2019.00019
– ident: ref35
  doi: 10.1002/spe.995
– ident: ref34
  doi: 10.1145/958491.958506
– ident: ref55
  doi: 10.1145/1869542.1869625
– ident: ref53
  doi: 10.1109/MS.2006.114
– ident: ref3
  doi: 10.1016/j.engappai.2020.104081
– ident: ref45
  doi: 10.1109/JIOT.2016.2565516
– ident: ref21
  doi: 10.1007/s10009-020-00565-0
– ident: ref27
  doi: 10.1145/1122012.1122013
– ident: ref50
  doi: 10.1109/MCOM.2017.1700328
– ident: ref2
  doi: 10.1109/JIOT.2020.2984887
– ident: ref57
  doi: 10.1145/1772954.1772965
– ident: ref23
  doi: 10.1016/j.jlamp.2019.100486
– ident: ref44
  doi: 10.1109/JIOT.2021.3101449
– ident: ref30
  doi: 10.15439/2016f407
– ident: ref43
  doi: 10.1007/s12652-018-0785-4
– ident: ref20
  doi: 10.1109/SASO.2015.19
– ident: ref24
  doi: 10.1007/978-3-030-61470-6_21
– ident: ref36
  doi: 10.1109/WSC.1994.717419
– ident: ref14
  doi: 10.1002/ett.3493
– ident: ref8
  doi: 10.1016/j.ins.2019.05.058
– ident: ref16
  doi: 10.1007/978-3-030-30985-5_3
– ident: ref19
  doi: 10.1145/3179994
– ident: ref31
  doi: 10.1109/GLOCOMW.2018.8644518
– ident: ref38
  doi: 10.3390/fi11110235
– ident: ref39
  doi: 10.3390/fi11030055
– ident: ref47
  doi: 10.1109/TNSE.2020.3008381
– ident: ref61
  doi: 10.1109/WAINA.2017.113
SSID ssj0001105196
Score 2.4301312
Snippet Research trends are pushing artificial intelligence (AI) across the IoT-Edge-Fog-Cloud continuum, to enable effective data analytics, decision making, as well...
Research trends are pushing artificial intelligence (AI) across the Internet of Things (IoT)–edge–fog–cloud continuum to enable effective data analytics,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive systems
Aggregates
Artificial intelligence
Cloud Services
Collective Services
Computational modeling
Computer architecture
Costs
Cyber-Physical Systems
Decision analysis
Decision making
Declarative programming
Deployment methodology
Edge Intelligence
Heterogeneity
Infrastructure
Internet of Things
Micromodules
Mobile and Ubiquitous Systems
Multimedia
Programming
Pulverisable Architectures
Service Middleware and Platform
Simulation
Title A Methodology and Simulation-based Toolchain for Estimating Deployment Performance of Smart Collective Services at the Edge
URI https://ieeexplore.ieee.org/document/9768117
https://www.proquest.com/docview/2722549924
Volume 9
WOSCitedRecordID wos000865097300049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sePDiq4r1xRw8idFsHt3kKFpR8VGwgreQfaQW2kRs6sU_7852WwVF8JaE3STw7e5832wmH8ChMCirtoy9IlYkUKK2l6rQ96RQOk-LMGfSIn3L7--T5-e0uwDH81oYrbX9-Eyf0KHdy1eVnFCq7NSETqqLbECDcz6t1frKpzAiI223ccn89PTm-qFnBGAQGF3Kg4jsiL-FHuul8mMBtlHlcvV_77MGK4494tkU7nVY0OUGrM6cGdBN1CZ8nOGdtYa2SXPMS4WPg5Fz6vIocinsVdVQvuSDEg1vxY6Z6kReyz5eaDIBpkdj96usAKsCH0dmoKHNNdhlEmcrDeY1GiaJHdXXm_B02emdX3nOZsGTYdiuPYNHlJBtmJCJUiJmKuYy0gnLY9rFi7WQgWGJIReCCekXSSGiyA91aqgUJ427BYtlVeptQCGUEWxaSZ8VUW54O9cxM9cSc2aohG6BP0Mgk-4f5GSFMcysFvHTjEDLCLTMgdaCo3mX1-kPOP5q3CSU5g0dQC3Ym8GcuSk6zgIeWHEcRDu_99qFZbo3BSoW78Fi_TbR-7Ak3-vB-O3Ajr5PKJ3agw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gV58i-tzDp7EatMm2_YouuJjXQVX8FaaR3VBW9HVi3_eTDa7CorgrS0JLXxJ5vsmnXwAO9KirJtKBKXQJFB4M8h0HAZKalNkZVww5ZBuJ51OeneXXY_B3qgWxhjjfj4z-3Tp9vJ1rd4oVXZgQyfVRY7DpOA8YoNqra-MCiM60vRblyzMDs7PrrpWAkaRVaZJxMmQ-FvwcW4qP5ZgF1dO5v73RfMw6_kjHg4AX4AxUy3C3NCbAf1UXYKPQ7x05tAubY5FpfGm9-S9ugKKXRq7df2oHopehZa5YstOdqKv1T0eG7IBplfj9VdhAdYl3jzZoYYu2-AWShyuNVj00XJJbOl7swy3J63u0WngjRYCFcfNfmAR4SkZh0mVai0F0yJR3KSsELSPJ4xUkeWJcSIlkyos01JyHsYms2QqIZW7AhNVXZlVQCm1lWxGq5CVvLDMPTGC2WepvbNkwjQgHCKQK38KOZlhPOZOjYRZTqDlBFruQWvA7qjL8-AIjr8aLxFKo4YeoAZsDGHO_SR9zaMkcvI44mu_99qG6dPuZTtvn3Uu1mGG3kNhi4kNmOi_vJlNmFLv_d7ry5YbiZ-qJN3K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Methodology+and+Simulation-based+Toolchain+for+Estimating+Deployment+Performance+of+Smart+Collective+Services+at+the+Edge&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Casadei%2C+Roberto&rft.au=Fortino%2C+Giancarlo&rft.au=Pianini%2C+Danilo&rft.au=Placuzzi%2C+Andrea&rft.date=2022-10-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJIOT.2022.3172470&rft.externalDocID=9768117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon