Graph-Based Deep Decomposition for Overlapping Large-Scale Optimization Problems

Decomposition methods play a critical role in cooperative co-evolutionary algorithms (CCEAs) for solving large-scale optimization problems. Although some well-performing decomposition methods have been designed based on the interactions among variables (IaV), their grouping accuracy is still limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems Jg. 53; H. 4; S. 1 - 13
Hauptverfasser: Zhang, Xin, Ding, Bo-Wen, Xu, Xin-Xin, Li, Jian-Yu, Zhan, Zhi-Hui, Qian, Pengjiang, Fang, Wei, Lai, Kuei-Kuei, Zhang, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2216, 2168-2232
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Decomposition methods play a critical role in cooperative co-evolutionary algorithms (CCEAs) for solving large-scale optimization problems. Although some well-performing decomposition methods have been designed based on the interactions among variables (IaV), their grouping accuracy is still limited due to the poor performance on the overlapping problems and the computational roundoff errors of IaV in the implementation. To deal with these limitations, a graph-based deep decomposition (GDD) method is proposed to obtain more accurate grouping results, especially for the overlapping problems. On the one hand, the GDD mines the IaV information and obtains the minimum vertex separator of the interaction graph of variables, so as to group variables deeply and recursively. On the other hand, the GDD has the ability of fault tolerance to deal with the computational roundoff errors of IaV and can improve the grouping accuracy. For better experimental studies of overlapping problems, a novel overlapping function generator is designed with the random and complicate overlap type, and two new metrics are proposed to evaluate the grouping accuracy. Comprehensive experiments show that GDD can greatly improve the grouping accuracy and help CCEAs perform better than other existing algorithms, especially on the overlapping problems. In addition, the GDD is highly fault tolerant and can divide problems accurately even on the inaccurate IaV.
AbstractList Decomposition methods play a critical role in cooperative co-evolutionary algorithms (CCEAs) for solving large-scale optimization problems. Although some well-performing decomposition methods have been designed based on the interactions among variables (IaV), their grouping accuracy is still limited due to the poor performance on the overlapping problems and the computational roundoff errors of IaV in the implementation. To deal with these limitations, a graph-based deep decomposition (GDD) method is proposed to obtain more accurate grouping results, especially for the overlapping problems. On the one hand, the GDD mines the IaV information and obtains the minimum vertex separator of the interaction graph of variables, so as to group variables deeply and recursively. On the other hand, the GDD has the ability of fault tolerance to deal with the computational roundoff errors of IaV and can improve the grouping accuracy. For better experimental studies of overlapping problems, a novel overlapping function generator is designed with the random and complicate overlap type, and two new metrics are proposed to evaluate the grouping accuracy. Comprehensive experiments show that GDD can greatly improve the grouping accuracy and help CCEAs perform better than other existing algorithms, especially on the overlapping problems. In addition, the GDD is highly fault tolerant and can divide problems accurately even on the inaccurate IaV.
Author Zhang, Xin
Ding, Bo-Wen
Xu, Xin-Xin
Fang, Wei
Qian, Pengjiang
Lai, Kuei-Kuei
Zhan, Zhi-Hui
Li, Jian-Yu
Zhang, Jun
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0003-3636-6453
  surname: Zhang
  fullname: Zhang, Xin
  organization: School of Artificial Intelligence and Computer Science and the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
– sequence: 2
  givenname: Bo-Wen
  surname: Ding
  fullname: Ding, Bo-Wen
  organization: School of Artificial Intelligence and Computer Science and the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
– sequence: 3
  givenname: Xin-Xin
  surname: Xu
  fullname: Xu, Xin-Xin
  organization: School of Computer Science and Technology, Ocean University of China, Qingdao, China
– sequence: 4
  givenname: Jian-Yu
  orcidid: 0000-0002-6143-9207
  surname: Li
  fullname: Li, Jian-Yu
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Zhi-Hui
  orcidid: 0000-0003-0862-0514
  surname: Zhan
  fullname: Zhan, Zhi-Hui
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 6
  givenname: Pengjiang
  orcidid: 0000-0002-5596-3694
  surname: Qian
  fullname: Qian, Pengjiang
  organization: School of Artificial Intelligence and Computer Science and the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
– sequence: 7
  givenname: Wei
  orcidid: 0000-0001-8052-0994
  surname: Fang
  fullname: Fang, Wei
  organization: School of Artificial Intelligence and Computer Science and the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
– sequence: 8
  givenname: Kuei-Kuei
  orcidid: 0000-0001-6049-1161
  surname: Lai
  fullname: Lai, Kuei-Kuei
  organization: Department of Business Administration, Chaoyang University of Technology, Taichung City, Taiwan
– sequence: 9
  givenname: Jun
  orcidid: 0000-0001-7835-9871
  surname: Zhang
  fullname: Zhang, Jun
  organization: Zhejiang Normal University, Jinhua, China
BookMark eNp9kE1PwzAMhiM0JMbYD0BcKnHuSJz06wgDBtLQJm2cozRzR6a2KUmHBL-e7kM7cOBi-_C8tvVckl5tayTkmtERYzS7Wy7exiOgACMODKiIzkgfWJyGABx6p5nFF2To_YZSyiCNOY37ZD5xqvkIH5THVfCI2HRF26qx3rTG1kFhXTD7QleqpjH1Opgqt8ZwoVWJwaxpTWV-1B6cO5uXWPkrcl6o0uPw2Afk_flpOX4Jp7PJ6_h-GmrO4zbkQFcqQl2IGFKBqKngGGnMlFYiYwkVBRdFofMsxZTlGeWoOIBeochRFJoPyO1hb-Ps5xZ9Kzd26-rupIQkTRKaJhQ6KjlQ2lnvHRZSm3b_cOuUKSWjcmdQ7gzKnUF5NNgl2Z9k40yl3Pe_mZtDxiDiic8yiDqM_wL_5n5n
CODEN ITSMFE
CitedBy_id crossref_primary_10_1109_TETCI_2024_3449924
crossref_primary_10_1109_TEVC_2023_3326327
crossref_primary_10_1016_j_ins_2024_121063
crossref_primary_10_1109_TAI_2024_3373391
crossref_primary_10_1109_TEVC_2024_3383095
crossref_primary_10_1016_j_asoc_2024_112232
crossref_primary_10_1007_s12293_023_00389_w
crossref_primary_10_1109_TSMC_2024_3418346
crossref_primary_10_1016_j_swevo_2023_101466
Cites_doi 10.1109/TSMC.2019.2936829
10.1109/TEVC.2020.2979740
10.1023/A:1026748613865
10.1109/TCYB.2022.3153964
10.1016/j.ins.2008.02.017
10.1109/TSMC.2021.3131312
10.1109/TEVC.2021.3097339
10.1109/TITS.2022.3180760
10.1109/TCYB.2015.2419276
10.1109/TEVC.2021.3051608
10.1006/jagm.1994.1043
10.1109/TEVC.2013.2281543
10.1109/TEVC.2017.2743016
10.1145/2791291
10.1007/s10462-021-10042-y
10.1109/TCYB.2019.2933499
10.1109/TEVC.2021.3065659
10.1145/3205455.3205483
10.1162/1063656043138905
10.1109/TCYB.2022.3164165
10.1109/TEVC.2018.2875430
10.1016/j.artint.2005.12.002
10.1109/TPDS.2016.2597826
10.1002/net.20478
10.1017/cbo9781139015165.009
10.1109/TEVC.2011.2112662
10.1109/TKDE.2020.3033324
10.1109/TEVC.2022.3185665
10.1109/TCYB.2020.3025577
10.1109/71.862207
10.1109/TEVC.2021.3131236
10.1109/TEVC.2022.3145582
10.1109/TCYB.2022.3158391
10.1016/j.ins.2014.08.039
10.1007/s13748-016-0082-4
10.1109/TCYB.2020.3029748
10.1109/CEC.2016.7744238
10.1109/TCYB.2019.2944873
10.1109/TSMC.2018.2855155
10.1109/TEVC.2017.2778089
10.1109/TEVC.2020.3009390
10.1109/TCYB.2014.2322602
10.1145/2739480.2754666
10.1109/TCYB.2016.2616170
10.1109/CEC.2019.8790204
10.1109/CEC.2008.4630935
10.1109/TCYB.2019.2937565
10.1007/s12293-020-00314-5
10.1109/TEVC.2017.2694221
10.1016/j.patcog.2020.107649
10.1007/s13042-019-01030-4
10.1016/j.swevo.2022.101058
10.1109/TCYB.2020.2977956
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2022.3212045
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2168-2232
EndPage 13
ExternalDocumentID 10_1109_TSMC_2022_3212045
9925202
Genre orig-research
GrantInformation_xml – fundername: High Level Personnel Project of Jiangsu Province
  grantid: JSSCBS20210852
– fundername: National Research Foundation of Korea
  grantid: NRF-2021H1D3A2A01082705
  funderid: 10.13039/501100003725
– fundername: National Natural Science Foundations of China
  grantid: 62106088; 62172192; 62176094; 62073155; 61873097
– fundername: Guangdong Natural Science Foundation Research Team
  grantid: 2018B030312003
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB2102102
  funderid: 10.13039/501100012166
– fundername: Key-Area Research and Development of Guangdong Province
  grantid: 2020B010166002
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
ABAZT
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-320da5ecf46284eec043e5ce9aca491704f34ffcb98e81b903ea322cde4be4fc3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001032427700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2216
IngestDate Sun Nov 09 06:38:56 EST 2025
Sat Nov 29 03:45:46 EST 2025
Tue Nov 18 21:42:11 EST 2025
Tue Nov 25 14:44:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-320da5ecf46284eec043e5ce9aca491704f34ffcb98e81b903ea322cde4be4fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5596-3694
0000-0001-6049-1161
0000-0001-7835-9871
0000-0003-0862-0514
0000-0001-8052-0994
0000-0003-3636-6453
0000-0002-6143-9207
0000-0003-4148-4294
OpenAccessLink https://ieeexplore.ieee.org/document/9925202
PQID 2787708702
PQPubID 75739
PageCount 13
ParticipantIDs ieee_primary_9925202
crossref_citationtrail_10_1109_TSMC_2022_3212045
crossref_primary_10_1109_TSMC_2022_3212045
proquest_journals_2787708702
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref42
Berger (ref52) 2001; 26
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Dinits (ref48) 1970; 11
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
Esfahanian (ref47) 2002
ref1
ref39
ref38
Li (ref45) 2013
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref5
  doi: 10.1109/TSMC.2019.2936829
– ident: ref11
  doi: 10.1109/TEVC.2020.2979740
– volume: 26
  start-page: 205
  issue: 2
  year: 2001
  ident: ref52
  article-title: The warshall algorithm and Dickson’s lemma: Two examples of realistic program extraction
  publication-title: J. Autom. Reason.
  doi: 10.1023/A:1026748613865
– year: 2013
  ident: ref45
  article-title: Benchmark functions for the CEC 2013 special session and competition on large scale global optimization
– ident: ref22
  doi: 10.1109/TCYB.2022.3153964
– ident: ref33
  doi: 10.1016/j.ins.2008.02.017
– ident: ref8
  doi: 10.1109/TSMC.2021.3131312
– ident: ref7
  doi: 10.1109/TEVC.2021.3097339
– ident: ref14
  doi: 10.1109/TITS.2022.3180760
– ident: ref4
  doi: 10.1109/TCYB.2015.2419276
– ident: ref9
  doi: 10.1109/TEVC.2021.3051608
– ident: ref49
  doi: 10.1006/jagm.1994.1043
– ident: ref34
  doi: 10.1109/TEVC.2013.2281543
– ident: ref26
  doi: 10.1109/TEVC.2017.2743016
– ident: ref36
  doi: 10.1145/2791291
– ident: ref24
  doi: 10.1007/s10462-021-10042-y
– ident: ref28
  doi: 10.1109/TCYB.2019.2933499
– ident: ref29
  doi: 10.1109/TEVC.2021.3065659
– ident: ref39
  doi: 10.1145/3205455.3205483
– ident: ref32
  doi: 10.1162/1063656043138905
– ident: ref10
  doi: 10.1109/TCYB.2022.3164165
– ident: ref13
  doi: 10.1109/TEVC.2018.2875430
– ident: ref50
  doi: 10.1016/j.artint.2005.12.002
– ident: ref12
  doi: 10.1109/TPDS.2016.2597826
– ident: ref43
  doi: 10.1002/net.20478
– ident: ref44
  doi: 10.1017/cbo9781139015165.009
– ident: ref46
  doi: 10.1109/TEVC.2011.2112662
– ident: ref2
  doi: 10.1109/TKDE.2020.3033324
– ident: ref3
  doi: 10.1109/TEVC.2022.3185665
– ident: ref31
  doi: 10.1109/TCYB.2020.3025577
– ident: ref51
  doi: 10.1109/71.862207
– ident: ref20
  doi: 10.1109/TEVC.2021.3131236
– ident: ref16
  doi: 10.1109/TEVC.2022.3145582
– ident: ref42
  doi: 10.1109/TCYB.2022.3158391
– ident: ref55
  doi: 10.1016/j.ins.2014.08.039
– start-page: 10
  volume-title: On the Evolution of Graph Connectivity Algorithms
  year: 2002
  ident: ref47
– ident: ref1
  doi: 10.1007/s13748-016-0082-4
– ident: ref21
  doi: 10.1109/TCYB.2020.3029748
– ident: ref53
  doi: 10.1109/CEC.2016.7744238
– ident: ref19
  doi: 10.1109/TCYB.2019.2944873
– ident: ref15
  doi: 10.1109/TSMC.2018.2855155
– ident: ref38
  doi: 10.1109/TEVC.2017.2778089
– ident: ref41
  doi: 10.1109/TEVC.2020.3009390
– ident: ref25
  doi: 10.1109/TCYB.2014.2322602
– ident: ref35
  doi: 10.1145/2739480.2754666
– ident: ref56
  doi: 10.1109/TCYB.2016.2616170
– ident: ref40
  doi: 10.1109/CEC.2019.8790204
– ident: ref54
  doi: 10.1109/CEC.2008.4630935
– ident: ref6
  doi: 10.1109/TCYB.2019.2937565
– ident: ref30
  doi: 10.1007/s12293-020-00314-5
– ident: ref37
  doi: 10.1109/TEVC.2017.2694221
– ident: ref17
  doi: 10.1016/j.patcog.2020.107649
– ident: ref23
  doi: 10.1007/s13042-019-01030-4
– volume: 11
  start-page: 1277
  issue: 11
  year: 1970
  ident: ref48
  article-title: Algorithms for solution of a problem of maximum flow in a network with power estimation
  publication-title: Soviet Math. Doklad
– ident: ref18
  doi: 10.1016/j.swevo.2022.101058
– ident: ref27
  doi: 10.1109/TCYB.2020.2977956
SSID ssj0001286306
Score 2.298257
Snippet Decomposition methods play a critical role in cooperative co-evolutionary algorithms (CCEAs) for solving large-scale optimization problems. Although some...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Computer science
Cooperative co-evolutionary algorithms (CCEAs)
Decomposition
decomposition methods
Evolutionary algorithms
evolutionary computation
Fault tolerance
Fault tolerant systems
Function generators
large-scale optimization problems (LSOPs)
Optimization
Particle separators
Research and development
Roundoff error
Roundoff errors
Signal generators
Title Graph-Based Deep Decomposition for Overlapping Large-Scale Optimization Problems
URI https://ieeexplore.ieee.org/document/9925202
https://www.proquest.com/docview/2787708702
Volume 53
WOSCitedRecordID wos001032427700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2232
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286306
  issn: 2168-2216
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWE2TvnL07cHHggreSjuZiKC74q7-fjNtdllQBCmEHhIo_ZJJJjPzfQB7lXWo8thGWCvnHRQTR7VxFFmMLfkni7EVm8hvb4unJ9OdgoNxLQwRNclndMivTSzf9vGTr8qOjFGpYubI6TzP2lqtifuUItONlKaKMw--b0MQM5bm6OH-5tQ7g0odam-rJRcvTWxDja7KD2Pc7DAXi__7tiVYCCdJcdxCvwxT1FuBxZFKgwiLdgXmJygHV6F7yQzV0YnfvKw4I3r3DaeVh9wt4c-w4u6LL_mYuOFZXHOmeHTvkSRx583LW6jbFN1WiWawBo8X5w-nV1FQVYhQ62wYaSVtlRI6rkpNiFAmmlIkU2GVeOdNJk4nzmFtCvJnWiM1VX7Vo6WkpsShXoeZXr9HGyBQJUWtDKU2NszSY-IUM47lUlEZMq4DcvSTSwyU46x88Vo2roc0JeNSMi5lwKUD--Mh7y3fxl-dVxmIcceAQQe2R0iWYUUOSuUtUy69dVKbv4_agjmWkm-zcrZhZvjxSTswi1_Dl8HHbjPZvgFamNJD
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9EBe8e_Lzj9vzKg09iNU3abvPot-K6LriCb6WdTA7BW8Vd_fvNtNllQRGkEPqQQOkvmWQyM78fwE5pHap2bCOslPMOiomjyjiKLMaW_JPF2IhNtLvd_P7e9GZgb1ILQ0R18hnt82sdy7dP-MpXZQfGqFQxc-QcK2eFaq2pG5U807WYpoozD79vQxgzluagf3t97N1Bpfa1t9aSy5emNqJaWeWDOa73mLOl733dMiyGs6Q4bMBfgRkarMLSWKdBhGW7Cj-nSAfXoHfOHNXRkd--rDghevYNJ5aH7C3hT7Hi5o2v-Zi64Z_ocK54dOuxJHHjDcz_ULkpeo0WzfAX3J2d9o8voqCrEKHW2SjSStoyJXRcl5oQoUw0pUimxDLx7ptMnE6cw8rk5E-1Rmoq_bpHS0lFiUP9G2YHTwP6AwJVklfKUGpjwzw9Jk4x42gu5aUh41ogxz-5wEA6ztoXj0XtfEhTMC4F41IEXFqwOxny3DBufNV5jYGYdAwYtGBjjGQR1uSwUN42taW3T-rv56O2YeGif90pOpfdq3X4wcLyTY7OBsyOXl5pE-bxbfQwfNmqJ947ecnVjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-Based+Deep+Decomposition+for+Overlapping+Large-Scale+Optimization+Problems&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zhang%2C+Xin&rft.au=Ding%2C+Bo-Wen&rft.au=Xu%2C+Xin-Xin&rft.au=Li%2C+Jian-Yu&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=2168-2216&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTSMC.2022.3212045&rft.externalDocID=9925202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon