Graph-Based Deep Decomposition for Overlapping Large-Scale Optimization Problems
Decomposition methods play a critical role in cooperative co-evolutionary algorithms (CCEAs) for solving large-scale optimization problems. Although some well-performing decomposition methods have been designed based on the interactions among variables (IaV), their grouping accuracy is still limited...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems Jg. 53; H. 4; S. 1 - 13 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2216, 2168-2232 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Decomposition methods play a critical role in cooperative co-evolutionary algorithms (CCEAs) for solving large-scale optimization problems. Although some well-performing decomposition methods have been designed based on the interactions among variables (IaV), their grouping accuracy is still limited due to the poor performance on the overlapping problems and the computational roundoff errors of IaV in the implementation. To deal with these limitations, a graph-based deep decomposition (GDD) method is proposed to obtain more accurate grouping results, especially for the overlapping problems. On the one hand, the GDD mines the IaV information and obtains the minimum vertex separator of the interaction graph of variables, so as to group variables deeply and recursively. On the other hand, the GDD has the ability of fault tolerance to deal with the computational roundoff errors of IaV and can improve the grouping accuracy. For better experimental studies of overlapping problems, a novel overlapping function generator is designed with the random and complicate overlap type, and two new metrics are proposed to evaluate the grouping accuracy. Comprehensive experiments show that GDD can greatly improve the grouping accuracy and help CCEAs perform better than other existing algorithms, especially on the overlapping problems. In addition, the GDD is highly fault tolerant and can divide problems accurately even on the inaccurate IaV. |
|---|---|
| AbstractList | Decomposition methods play a critical role in cooperative co-evolutionary algorithms (CCEAs) for solving large-scale optimization problems. Although some well-performing decomposition methods have been designed based on the interactions among variables (IaV), their grouping accuracy is still limited due to the poor performance on the overlapping problems and the computational roundoff errors of IaV in the implementation. To deal with these limitations, a graph-based deep decomposition (GDD) method is proposed to obtain more accurate grouping results, especially for the overlapping problems. On the one hand, the GDD mines the IaV information and obtains the minimum vertex separator of the interaction graph of variables, so as to group variables deeply and recursively. On the other hand, the GDD has the ability of fault tolerance to deal with the computational roundoff errors of IaV and can improve the grouping accuracy. For better experimental studies of overlapping problems, a novel overlapping function generator is designed with the random and complicate overlap type, and two new metrics are proposed to evaluate the grouping accuracy. Comprehensive experiments show that GDD can greatly improve the grouping accuracy and help CCEAs perform better than other existing algorithms, especially on the overlapping problems. In addition, the GDD is highly fault tolerant and can divide problems accurately even on the inaccurate IaV. |
| Author | Zhang, Xin Ding, Bo-Wen Xu, Xin-Xin Fang, Wei Qian, Pengjiang Lai, Kuei-Kuei Zhan, Zhi-Hui Li, Jian-Yu Zhang, Jun |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0003-3636-6453 surname: Zhang fullname: Zhang, Xin organization: School of Artificial Intelligence and Computer Science and the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China – sequence: 2 givenname: Bo-Wen surname: Ding fullname: Ding, Bo-Wen organization: School of Artificial Intelligence and Computer Science and the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China – sequence: 3 givenname: Xin-Xin surname: Xu fullname: Xu, Xin-Xin organization: School of Computer Science and Technology, Ocean University of China, Qingdao, China – sequence: 4 givenname: Jian-Yu orcidid: 0000-0002-6143-9207 surname: Li fullname: Li, Jian-Yu organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Zhi-Hui orcidid: 0000-0003-0862-0514 surname: Zhan fullname: Zhan, Zhi-Hui organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 6 givenname: Pengjiang orcidid: 0000-0002-5596-3694 surname: Qian fullname: Qian, Pengjiang organization: School of Artificial Intelligence and Computer Science and the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China – sequence: 7 givenname: Wei orcidid: 0000-0001-8052-0994 surname: Fang fullname: Fang, Wei organization: School of Artificial Intelligence and Computer Science and the Jiangsu Key Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China – sequence: 8 givenname: Kuei-Kuei orcidid: 0000-0001-6049-1161 surname: Lai fullname: Lai, Kuei-Kuei organization: Department of Business Administration, Chaoyang University of Technology, Taichung City, Taiwan – sequence: 9 givenname: Jun orcidid: 0000-0001-7835-9871 surname: Zhang fullname: Zhang, Jun organization: Zhejiang Normal University, Jinhua, China |
| BookMark | eNp9kE1PwzAMhiM0JMbYD0BcKnHuSJz06wgDBtLQJm2cozRzR6a2KUmHBL-e7kM7cOBi-_C8tvVckl5tayTkmtERYzS7Wy7exiOgACMODKiIzkgfWJyGABx6p5nFF2To_YZSyiCNOY37ZD5xqvkIH5THVfCI2HRF26qx3rTG1kFhXTD7QleqpjH1Opgqt8ZwoVWJwaxpTWV-1B6cO5uXWPkrcl6o0uPw2Afk_flpOX4Jp7PJ6_h-GmrO4zbkQFcqQl2IGFKBqKngGGnMlFYiYwkVBRdFofMsxZTlGeWoOIBeochRFJoPyO1hb-Ps5xZ9Kzd26-rupIQkTRKaJhQ6KjlQ2lnvHRZSm3b_cOuUKSWjcmdQ7gzKnUF5NNgl2Z9k40yl3Pe_mZtDxiDiic8yiDqM_wL_5n5n |
| CODEN | ITSMFE |
| CitedBy_id | crossref_primary_10_1109_TETCI_2024_3449924 crossref_primary_10_1109_TEVC_2023_3326327 crossref_primary_10_1016_j_ins_2024_121063 crossref_primary_10_1109_TAI_2024_3373391 crossref_primary_10_1109_TEVC_2024_3383095 crossref_primary_10_1016_j_asoc_2024_112232 crossref_primary_10_1007_s12293_023_00389_w crossref_primary_10_1109_TSMC_2024_3418346 crossref_primary_10_1016_j_swevo_2023_101466 |
| Cites_doi | 10.1109/TSMC.2019.2936829 10.1109/TEVC.2020.2979740 10.1023/A:1026748613865 10.1109/TCYB.2022.3153964 10.1016/j.ins.2008.02.017 10.1109/TSMC.2021.3131312 10.1109/TEVC.2021.3097339 10.1109/TITS.2022.3180760 10.1109/TCYB.2015.2419276 10.1109/TEVC.2021.3051608 10.1006/jagm.1994.1043 10.1109/TEVC.2013.2281543 10.1109/TEVC.2017.2743016 10.1145/2791291 10.1007/s10462-021-10042-y 10.1109/TCYB.2019.2933499 10.1109/TEVC.2021.3065659 10.1145/3205455.3205483 10.1162/1063656043138905 10.1109/TCYB.2022.3164165 10.1109/TEVC.2018.2875430 10.1016/j.artint.2005.12.002 10.1109/TPDS.2016.2597826 10.1002/net.20478 10.1017/cbo9781139015165.009 10.1109/TEVC.2011.2112662 10.1109/TKDE.2020.3033324 10.1109/TEVC.2022.3185665 10.1109/TCYB.2020.3025577 10.1109/71.862207 10.1109/TEVC.2021.3131236 10.1109/TEVC.2022.3145582 10.1109/TCYB.2022.3158391 10.1016/j.ins.2014.08.039 10.1007/s13748-016-0082-4 10.1109/TCYB.2020.3029748 10.1109/CEC.2016.7744238 10.1109/TCYB.2019.2944873 10.1109/TSMC.2018.2855155 10.1109/TEVC.2017.2778089 10.1109/TEVC.2020.3009390 10.1109/TCYB.2014.2322602 10.1145/2739480.2754666 10.1109/TCYB.2016.2616170 10.1109/CEC.2019.8790204 10.1109/CEC.2008.4630935 10.1109/TCYB.2019.2937565 10.1007/s12293-020-00314-5 10.1109/TEVC.2017.2694221 10.1016/j.patcog.2020.107649 10.1007/s13042-019-01030-4 10.1016/j.swevo.2022.101058 10.1109/TCYB.2020.2977956 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
| DOI | 10.1109/TSMC.2022.3212045 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2168-2232 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TSMC_2022_3212045 9925202 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: High Level Personnel Project of Jiangsu Province grantid: JSSCBS20210852 – fundername: National Research Foundation of Korea grantid: NRF-2021H1D3A2A01082705 funderid: 10.13039/501100003725 – fundername: National Natural Science Foundations of China grantid: 62106088; 62172192; 62176094; 62073155; 61873097 – fundername: Guangdong Natural Science Foundation Research Team grantid: 2018B030312003 – fundername: National Key Research and Development Program of China grantid: 2019YFB2102102 funderid: 10.13039/501100012166 – fundername: Key-Area Research and Development of Guangdong Province grantid: 2020B010166002 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD ABAZT FR3 H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c336t-320da5ecf46284eec043e5ce9aca491704f34ffcb98e81b903ea322cde4be4fc3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001032427700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2216 |
| IngestDate | Sun Nov 09 06:38:56 EST 2025 Sat Nov 29 03:45:46 EST 2025 Tue Nov 18 21:42:11 EST 2025 Tue Nov 25 14:44:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c336t-320da5ecf46284eec043e5ce9aca491704f34ffcb98e81b903ea322cde4be4fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5596-3694 0000-0001-6049-1161 0000-0001-7835-9871 0000-0003-0862-0514 0000-0001-8052-0994 0000-0003-3636-6453 0000-0002-6143-9207 0000-0003-4148-4294 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9925202 |
| PQID | 2787708702 |
| PQPubID | 75739 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9925202 crossref_citationtrail_10_1109_TSMC_2022_3212045 crossref_primary_10_1109_TSMC_2022_3212045 proquest_journals_2787708702 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
| PublicationTitleAbbrev | TSMC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref56 ref15 ref14 ref53 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref42 Berger (ref52) 2001; 26 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Dinits (ref48) 1970; 11 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 Esfahanian (ref47) 2002 ref1 ref39 ref38 Li (ref45) 2013 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref5 doi: 10.1109/TSMC.2019.2936829 – ident: ref11 doi: 10.1109/TEVC.2020.2979740 – volume: 26 start-page: 205 issue: 2 year: 2001 ident: ref52 article-title: The warshall algorithm and Dickson’s lemma: Two examples of realistic program extraction publication-title: J. Autom. Reason. doi: 10.1023/A:1026748613865 – year: 2013 ident: ref45 article-title: Benchmark functions for the CEC 2013 special session and competition on large scale global optimization – ident: ref22 doi: 10.1109/TCYB.2022.3153964 – ident: ref33 doi: 10.1016/j.ins.2008.02.017 – ident: ref8 doi: 10.1109/TSMC.2021.3131312 – ident: ref7 doi: 10.1109/TEVC.2021.3097339 – ident: ref14 doi: 10.1109/TITS.2022.3180760 – ident: ref4 doi: 10.1109/TCYB.2015.2419276 – ident: ref9 doi: 10.1109/TEVC.2021.3051608 – ident: ref49 doi: 10.1006/jagm.1994.1043 – ident: ref34 doi: 10.1109/TEVC.2013.2281543 – ident: ref26 doi: 10.1109/TEVC.2017.2743016 – ident: ref36 doi: 10.1145/2791291 – ident: ref24 doi: 10.1007/s10462-021-10042-y – ident: ref28 doi: 10.1109/TCYB.2019.2933499 – ident: ref29 doi: 10.1109/TEVC.2021.3065659 – ident: ref39 doi: 10.1145/3205455.3205483 – ident: ref32 doi: 10.1162/1063656043138905 – ident: ref10 doi: 10.1109/TCYB.2022.3164165 – ident: ref13 doi: 10.1109/TEVC.2018.2875430 – ident: ref50 doi: 10.1016/j.artint.2005.12.002 – ident: ref12 doi: 10.1109/TPDS.2016.2597826 – ident: ref43 doi: 10.1002/net.20478 – ident: ref44 doi: 10.1017/cbo9781139015165.009 – ident: ref46 doi: 10.1109/TEVC.2011.2112662 – ident: ref2 doi: 10.1109/TKDE.2020.3033324 – ident: ref3 doi: 10.1109/TEVC.2022.3185665 – ident: ref31 doi: 10.1109/TCYB.2020.3025577 – ident: ref51 doi: 10.1109/71.862207 – ident: ref20 doi: 10.1109/TEVC.2021.3131236 – ident: ref16 doi: 10.1109/TEVC.2022.3145582 – ident: ref42 doi: 10.1109/TCYB.2022.3158391 – ident: ref55 doi: 10.1016/j.ins.2014.08.039 – start-page: 10 volume-title: On the Evolution of Graph Connectivity Algorithms year: 2002 ident: ref47 – ident: ref1 doi: 10.1007/s13748-016-0082-4 – ident: ref21 doi: 10.1109/TCYB.2020.3029748 – ident: ref53 doi: 10.1109/CEC.2016.7744238 – ident: ref19 doi: 10.1109/TCYB.2019.2944873 – ident: ref15 doi: 10.1109/TSMC.2018.2855155 – ident: ref38 doi: 10.1109/TEVC.2017.2778089 – ident: ref41 doi: 10.1109/TEVC.2020.3009390 – ident: ref25 doi: 10.1109/TCYB.2014.2322602 – ident: ref35 doi: 10.1145/2739480.2754666 – ident: ref56 doi: 10.1109/TCYB.2016.2616170 – ident: ref40 doi: 10.1109/CEC.2019.8790204 – ident: ref54 doi: 10.1109/CEC.2008.4630935 – ident: ref6 doi: 10.1109/TCYB.2019.2937565 – ident: ref30 doi: 10.1007/s12293-020-00314-5 – ident: ref37 doi: 10.1109/TEVC.2017.2694221 – ident: ref17 doi: 10.1016/j.patcog.2020.107649 – ident: ref23 doi: 10.1007/s13042-019-01030-4 – volume: 11 start-page: 1277 issue: 11 year: 1970 ident: ref48 article-title: Algorithms for solution of a problem of maximum flow in a network with power estimation publication-title: Soviet Math. Doklad – ident: ref18 doi: 10.1016/j.swevo.2022.101058 – ident: ref27 doi: 10.1109/TCYB.2020.2977956 |
| SSID | ssj0001286306 |
| Score | 2.298257 |
| Snippet | Decomposition methods play a critical role in cooperative co-evolutionary algorithms (CCEAs) for solving large-scale optimization problems. Although some... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Computer science Cooperative co-evolutionary algorithms (CCEAs) Decomposition decomposition methods Evolutionary algorithms evolutionary computation Fault tolerance Fault tolerant systems Function generators large-scale optimization problems (LSOPs) Optimization Particle separators Research and development Roundoff error Roundoff errors Signal generators |
| Title | Graph-Based Deep Decomposition for Overlapping Large-Scale Optimization Problems |
| URI | https://ieeexplore.ieee.org/document/9925202 https://www.proquest.com/docview/2787708702 |
| Volume | 53 |
| WOSCitedRecordID | wos001032427700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2232 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286306 issn: 2168-2216 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTWE2TvnL07cHHggreSjuZiKC74q7-fjNtdllQBCmEHhIo_ZJJJjPzfQB7lXWo8thGWCvnHRQTR7VxFFmMLfkni7EVm8hvb4unJ9OdgoNxLQwRNclndMivTSzf9vGTr8qOjFGpYubI6TzP2lqtifuUItONlKaKMw--b0MQM5bm6OH-5tQ7g0odam-rJRcvTWxDja7KD2Pc7DAXi__7tiVYCCdJcdxCvwxT1FuBxZFKgwiLdgXmJygHV6F7yQzV0YnfvKw4I3r3DaeVh9wt4c-w4u6LL_mYuOFZXHOmeHTvkSRx583LW6jbFN1WiWawBo8X5w-nV1FQVYhQ62wYaSVtlRI6rkpNiFAmmlIkU2GVeOdNJk4nzmFtCvJnWiM1VX7Vo6WkpsShXoeZXr9HGyBQJUWtDKU2NszSY-IUM47lUlEZMq4DcvSTSwyU46x88Vo2roc0JeNSMi5lwKUD--Mh7y3fxl-dVxmIcceAQQe2R0iWYUUOSuUtUy69dVKbv4_agjmWkm-zcrZhZvjxSTswi1_Dl8HHbjPZvgFamNJD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9EBe8e_Lzj9vzKg09iNU3abvPot-K6LriCb6WdTA7BW8Vd_fvNtNllQRGkEPqQQOkvmWQyM78fwE5pHap2bCOslPMOiomjyjiKLMaW_JPF2IhNtLvd_P7e9GZgb1ILQ0R18hnt82sdy7dP-MpXZQfGqFQxc-QcK2eFaq2pG5U807WYpoozD79vQxgzluagf3t97N1Bpfa1t9aSy5emNqJaWeWDOa73mLOl733dMiyGs6Q4bMBfgRkarMLSWKdBhGW7Cj-nSAfXoHfOHNXRkd--rDghevYNJ5aH7C3hT7Hi5o2v-Zi64Z_ocK54dOuxJHHjDcz_ULkpeo0WzfAX3J2d9o8voqCrEKHW2SjSStoyJXRcl5oQoUw0pUimxDLx7ptMnE6cw8rk5E-1Rmoq_bpHS0lFiUP9G2YHTwP6AwJVklfKUGpjwzw9Jk4x42gu5aUh41ogxz-5wEA6ztoXj0XtfEhTMC4F41IEXFqwOxny3DBufNV5jYGYdAwYtGBjjGQR1uSwUN42taW3T-rv56O2YeGif90pOpfdq3X4wcLyTY7OBsyOXl5pE-bxbfQwfNmqJ947ecnVjA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-Based+Deep+Decomposition+for+Overlapping+Large-Scale+Optimization+Problems&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Zhang%2C+Xin&rft.au=Ding%2C+Bo-Wen&rft.au=Xu%2C+Xin-Xin&rft.au=Li%2C+Jian-Yu&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=2168-2216&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTSMC.2022.3212045&rft.externalDocID=9925202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |