Quasi-3D mapping of soil moisture in agricultural fields using electrical conductivity sensing
Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in non-invasive electromagnetic induction (EMI) techniques have created an opportunity to determine soil moisture content with high-resolution and min...
Uloženo v:
| Vydáno v: | Agricultural water management Ročník 259; s. 107246 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2022
|
| Témata: | |
| ISSN: | 0378-3774, 1873-2283 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in non-invasive electromagnetic induction (EMI) techniques have created an opportunity to determine soil moisture content with high-resolution and minimal soil intrusion. So far, EMI has mainly been used for homogenous soil conditions, which are not common in agriculture and results are mainly validated by excavated pits or calibration models using soil samples on a transect. This study converts apparent electrical conductivity data recorded with a Dualem-1Hs EM-metre for two surveys of variable moisture conditions (dry and wet season) with 2475 and 2174 data points over 5.4 ha, in a field with a contrasting vertical soil profile into spatiotemporal management zones. A least square inversion algorithm was used to determine electrical conductivities for individual soil layers of 0–0.5 m, 0.5–0.8 m and 0.8–1.6 m. Soil samples from the depth of 0.5 m and 0.8 m were used for soil moisture calibrations. A laboratory experiment under controlled conditions developed electric conductivity vs volumetric water content relations with power law functions for required soil depth slices with R2 values between 0.98 and 0.99. Subsequently, EMI data were converted to volumetric water contents for each layer and predictions were spatially displayed. Median change between the measured apparent conductivity and inverted values range from 6 to 17 mS m-1 resulting in 3–7% difference in volumetric water prediction. These EMI based soil moisture predictions were compared with neutron moisture metre measurements, with Pearson R values of 0.74 and 0.95 for the wet and dry season surveys, respectively. The method is robust and offers a comparatively fast method to estimate the soil moisture status in fields and subsequently make informed management decisions.
•An electromagnetic induction survey was used for field soil moisture prediction.•Electrical resistivity–soil moisture calibrations were established for two depths.•The calibrations were used to convert soil conductivity to volumetric moisture.•Soil moisture was accurately predicted at three depths for dry and wet seasons.•Inversion improved soil moisture estimation over the soil profile. |
|---|---|
| AbstractList | Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in non-invasive electromagnetic induction (EMI) techniques have created an opportunity to determine soil moisture content with high-resolution and minimal soil intrusion. So far, EMI has mainly been used for homogenous soil conditions, which are not common in agriculture and results are mainly validated by excavated pits or calibration models using soil samples on a transect. This study converts apparent electrical conductivity data recorded with a Dualem-1Hs EM-metre for two surveys of variable moisture conditions (dry and wet season) with 2475 and 2174 data points over 5.4 ha, in a field with a contrasting vertical soil profile into spatiotemporal management zones. A least square inversion algorithm was used to determine electrical conductivities for individual soil layers of 0–0.5 m, 0.5–0.8 m and 0.8–1.6 m. Soil samples from the depth of 0.5 m and 0.8 m were used for soil moisture calibrations. A laboratory experiment under controlled conditions developed electric conductivity vs volumetric water content relations with power law functions for required soil depth slices with R² values between 0.98 and 0.99. Subsequently, EMI data were converted to volumetric water contents for each layer and predictions were spatially displayed. Median change between the measured apparent conductivity and inverted values range from 6 to 17 mS m⁻¹ resulting in 3–7% difference in volumetric water prediction. These EMI based soil moisture predictions were compared with neutron moisture metre measurements, with Pearson R values of 0.74 and 0.95 for the wet and dry season surveys, respectively. The method is robust and offers a comparatively fast method to estimate the soil moisture status in fields and subsequently make informed management decisions. Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in non-invasive electromagnetic induction (EMI) techniques have created an opportunity to determine soil moisture content with high-resolution and minimal soil intrusion. So far, EMI has mainly been used for homogenous soil conditions, which are not common in agriculture and results are mainly validated by excavated pits or calibration models using soil samples on a transect. This study converts apparent electrical conductivity data recorded with a Dualem-1Hs EM-metre for two surveys of variable moisture conditions (dry and wet season) with 2475 and 2174 data points over 5.4 ha, in a field with a contrasting vertical soil profile into spatiotemporal management zones. A least square inversion algorithm was used to determine electrical conductivities for individual soil layers of 0–0.5 m, 0.5–0.8 m and 0.8–1.6 m. Soil samples from the depth of 0.5 m and 0.8 m were used for soil moisture calibrations. A laboratory experiment under controlled conditions developed electric conductivity vs volumetric water content relations with power law functions for required soil depth slices with R2 values between 0.98 and 0.99. Subsequently, EMI data were converted to volumetric water contents for each layer and predictions were spatially displayed. Median change between the measured apparent conductivity and inverted values range from 6 to 17 mS m-1 resulting in 3–7% difference in volumetric water prediction. These EMI based soil moisture predictions were compared with neutron moisture metre measurements, with Pearson R values of 0.74 and 0.95 for the wet and dry season surveys, respectively. The method is robust and offers a comparatively fast method to estimate the soil moisture status in fields and subsequently make informed management decisions. •An electromagnetic induction survey was used for field soil moisture prediction.•Electrical resistivity–soil moisture calibrations were established for two depths.•The calibrations were used to convert soil conductivity to volumetric moisture.•Soil moisture was accurately predicted at three depths for dry and wet seasons.•Inversion improved soil moisture estimation over the soil profile. |
| ArticleNumber | 107246 |
| Author | Shaukat, Hira Flower, Ken C. Leopold, Matthias |
| Author_xml | – sequence: 1 givenname: Hira surname: Shaukat fullname: Shaukat, Hira organization: UWA School of Agriculture and Environment, soil matrix group, The University of Western Australia, Stirling Highway, Crawley, WA 6009, Australia – sequence: 2 givenname: Ken C. surname: Flower fullname: Flower, Ken C. organization: UWA School of Agriculture and Environment, soil matrix group, The University of Western Australia, Stirling Highway, Crawley, WA 6009, Australia – sequence: 3 givenname: Matthias surname: Leopold fullname: Leopold, Matthias email: matthias.leopold@uwa.edu.au organization: UWA School of Agriculture and Environment, soil matrix group, The University of Western Australia, Stirling Highway, Crawley, WA 6009, Australia |
| BookMark | eNqFkD1vFDEQhi0UJC6BX0DjMs0e_thb7xYponwAUiSEBC2W1x6f5uSzL7Y3Uf49Po6KIlSjmXmfkeY5J2cxRSDkI2drzvjwabc222dT14IJ3iZK9MMbsuKjkp0QozwjKybV2Eml-nfkvJQdY6xnvVqRX98XU7CTt3RvDgeMW5o8LQkD3ScsdclAMVKzzWiX0FoTqEcIrtClHNMQwNa2bHOboltsxSesL7RAPO7fk7fehAIf_tYL8vP-7sfNl-7h2-evN9cPnZVyqJ0AEBbECJPf2NmxyXMzqckJNgo1egVWzrPaKOflxs3ODUJY3z638yzZ6Iy8IJenu4ecHhcoVe-xWAjBREhL0WKQw8j5ZupbVJ6iNqdSMnh9yLg3-UVzpo829U7_samPNvXJZqOmfyiL1VRMsWaD4T_s1YmFZuAJIetiEaIFh7nZ0y7hq_xvSFSV7Q |
| CitedBy_id | crossref_primary_10_3390_app15147766 crossref_primary_10_1016_j_still_2023_105953 crossref_primary_10_1088_1755_1315_1458_1_012014 crossref_primary_10_1016_j_atech_2023_100330 crossref_primary_10_3389_fenvs_2022_883533 crossref_primary_10_3390_rs15112932 crossref_primary_10_1002_ldr_4505 crossref_primary_10_1016_j_jhydrol_2024_131994 |
| Cites_doi | 10.1016/S0378-4290(97)00034-8 10.1016/j.geoderma.2017.10.045 10.1016/S1537-5110(03)00005-9 10.1190/1.1442649 10.3390/s19214753 10.1016/j.compag.2004.10.005 10.1016/j.agwat.2015.09.003 10.1016/S1161-0301(02)00108-9 10.1016/j.soilbio.2019.05.019 10.1111/sum.12370 10.1016/j.jhydrol.2020.125810 10.2118/942054-G 10.13031/2013.20098 10.1038/s41598-017-06312-x 10.1071/AR00103 10.2136/vzj2010.0079 10.1016/j.biosystemseng.2003.09.001 10.1016/j.fcr.2018.08.023 10.1016/j.still.2019.104319 10.17875/gup2016-958 10.1002/eco.121 10.1016/j.jappgeo.2004.04.005 10.1071/ASEG2001ab075 10.1002/2013WR014864 10.3390/s150203262 10.1016/j.compag.2004.11.004 10.1016/j.advwatres.2017.10.019 10.1016/j.fcr.2011.10.017 10.1016/j.compag.2010.07.003 10.1071/EA03121 10.2113/JEEG18.1.1 10.2136/vzj2012.0129 10.2134/agronj2003.4720 10.1016/j.catena.2012.03.008 10.1016/j.geoderma.2012.07.018 10.1002/vzj2.20080 10.15302/J-FASE-2017143 10.1002/vzj2.20037 10.1002/jpln.201700447 10.1071/SR11145 10.1080/01431161.2015.1055610 10.2113/JEEG15.3.93 10.1007/s11119-020-09763-x 10.1016/j.fcr.2011.09.011 10.1016/j.geoderma.2014.10.005 10.3390/soilsystems4020025 10.2136/sssaj1976.03615995004000050017x 10.1002/fes3.53 10.1016/j.gfs.2014.11.003 10.1111/sum.12345 10.1016/j.still.2020.104618 10.1038/nclimate1633 10.1117/1.JRS.13.024519 10.1023/B:PRAG.0000022359.79184.92 10.1016/S0926-9851(00)00038-0 10.1016/j.geoderma.2018.08.001 10.1186/s13634-016-0383-6 10.1038/s41598-017-13165-x 10.1016/j.fcr.2017.03.012 10.1007/s11119-009-9156-7 10.1007/s00382-014-2075-y 10.1016/j.jappgeo.2013.10.005 10.3997/1873-0604.2010037 10.1016/j.biosystemseng.2006.01.002 10.1016/j.geoderma.2014.01.027 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.agwat.2021.107246 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1873-2283 |
| ExternalDocumentID | 10_1016_j_agwat_2021_107246 S0378377421005230 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABMAC ABQEM ABYKQ ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPCBC SSA SSJ SSZ T5K Y6R ~02 ~G- ~KM 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HVGLF HZ~ R2- SEP SEW VH1 WUQ XPP ZMT ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c336t-2ee2ce28e9f5cbd09f1a979d208278f7ec3bb757df35dbdd622cf101cbb308da3 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711635400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-3774 |
| IngestDate | Sun Nov 09 11:39:14 EST 2025 Tue Nov 18 21:02:23 EST 2025 Sat Nov 29 07:10:15 EST 2025 Fri Feb 23 02:46:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electrical resistivity tomography EM inversion Soil volumetric water content Crop rotation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c336t-2ee2ce28e9f5cbd09f1a979d208278f7ec3bb757df35dbdd622cf101cbb308da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2636811594 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636811594 crossref_primary_10_1016_j_agwat_2021_107246 crossref_citationtrail_10_1016_j_agwat_2021_107246 elsevier_sciencedirect_doi_10_1016_j_agwat_2021_107246 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Agricultural water management |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhao, Li, Zare, Wang, Triantafilis (bib84) 2020; 200 Minasny, McBratney, Whelan (bib57) 2005 Flower, Ward, Cordingley, Micin, Craig (bib23) 2017; 208 Iizumi, Ramankutty (bib38) 2015; 4 Stockmann, Malone, McBratney, Minasny (bib72) 2015; 239–240 Ward, Flower, Cordingley, Weeks, Micin (bib79) 2012; 132 Archie (bib3) 1942; 146 Garré, Coteur, Wongleecharoen, Kongkaew, Diels, Vanderborght (bib26) 2013; 12 Doolittle, Brevik (bib19) 2014; 223–225 Delefortrie, Saey, Van De Vijver, De Smedt, Missiaen, Demerre, Van Meirvenne (bib17) 2014; 100 Brogi, Huisman, Pätzold, von Hebel, Weihermüller, Kaufmann, van der Kruk, Vereecken (bib11) 2019; 335 Hossain, Lamb, Lockwood, P, Frazier (bib33) 2010; 74 Tsoar (bib77) 2005 Huntington (bib37) 2010 Lesch (bib46) 2005; 46 Lavoué, Kruk, Rings, Andre, Moghadas, Huisman, Lambot, Weihermüller, Vanderborght, Vereecken (bib44) 2010; 8 McKenzie, Jacquier, Gregory, Cresswell (bib55) 2000; 11 Hochman, Horan (bib32) 2018; 228 Huang, Scudiero, Choo, Corwin, Triantafilis (bib35) 2016; 163 McFarlane, George, Ruprecht, Charles, Hodgson (bib54) 2020; 103 Hübner, C., Kaatze, U., 2016. Electromagnetic Moisture Measurement. Pearson, Neuvo, Astola, Gabbouj (bib64) 2016; 2016 von Hebel, Rudolph, Mester, Huisman, Kumbhar, Vereecken, van der Kruk (bib76) 2014; 50 Loke, Wilkinson, Chambers (bib49) 2015 Heathman, Cosh, Merwade, Han (bib30) 2012; 95 Dakak, Huang, Zouahri, Douaik, Triantafilis (bib16) 2017; 33 Russell, J.J., 1996. Chemical fallowinga and manipulation of pasture along with early seeding give greater yields and water use of wheat on a sandy clay loam soil. In: Proceedings of 8th Agronomy Conference, The Regional Institute Online Publishing. Sudduth, Kitchen, Bollero, Bullock, Wiebold (bib73) 2003; 95 Zare, Li, Khongnawang, Farzamian, Triantafilis (bib81) 2020; 4 O’Leary, Connor (bib62) 1997; 52 Monteiro Santos (bib59) 2004; 56 Leopold, Gupanis-Broadway, Baker, Hankin, Treble (bib45) 2021; 593 BOM, 2020. Climate statistics for Australian locations [WWW Document]. Mananze, Pôças, Cunha (bib52) 2019; 13 Brevik, Fenton, Horton (bib10) 2004; 5 Flower, Cordingley, Ward, Weeks (bib22) 2012; 132 bib87 bib88 . bib86 Sasaki (bib71) 1989; 54 Zhang, Zheng, Noll, Hu, Wanek (bib83) 2019; 135 Djaman, Irmak (bib18) 2012; 55 Keating, Carberry, Hammer, Probert, Robertson, Holzworth, Huth, Hargreaves, Meinke, Hochman, McLean, Verburg, Snow, Dimes, Silburn, Wang, Brown, Bristow, Asseng, Chapman, McCown, Freebairn, Smith (bib42) 2003; 18 Triantafilis, Ribeiro, Page, Monteiro Santos (bib75) 2013 Von Hebel, der Kruk, Huisman, Mester, Altdorff, Endres, Zimmermann, Garré, Vereecken, H (bib78) 2019; 19 Gerssen-Gondelach, Wicke, Faaij (bib28) 2015; 4 Sasaki (bib70) 2001; 46 Abdu, Robinson, Boettinger, Jones (bib1) 2017; 4 Angus, Gault, Peoples, Stapper, Herwaarden (bib2) 2001; 52 Zhang, Li, Tang, Tang, Wu, Lu, Shao (bib82) 2015; 36 Bradford, Schlaepfer, Lauenroth, Yackulic, Duniway, Hall, Jia, Jamiyansharav, Munson, Wilson, Tietjen (bib9) 2017; 7 Corwin, Lesch (bib14) 2005; 46 Zhao, Peth, Hallett, Wang, Giese, Gao, Horn (bib85) 2011; 4 Nielsen, Vigil (bib61) 2018 Garré, Javaux, Vanderborght, Pagès, Vereecken (bib27) 2011; 10 Ma, McBratney, Whelan, Minasny, Short (bib51) 2011; 12 McNeill, J.D., 1980. Electromagnetic terrain conductivity measurement at low induction numbers. TN-6. Geonics Limited Mississauga, ON, Canada. El-Naggar, Hedley, Roudier, Horne, Clothier (bib20) 2021; 22 Rallos, R. V., Gultiano, W.A., Vidal, J.F., 2013. Agronomic applicability of non-destructive soil moisture-density measurements using gamma-neutron probe. In: Proceedings of the Annual Meeting and Scientific Conference. Philippines, pp. 83–84. Hedley, Roudier, Yule, Ekanayake, Bradbury (bib31) 2013; 199 Lv, Liu, Cao, Zhu (bib50) 2017; 7 Dai (bib15) 2012; 3 Moura, R., Pereira, T., Barros, M.T., Alipio, R., Lima, A.C.S., Schroeder, M.A., 2018. Analysis of frequency-dependence of soil resisitivity: emphasis at low frequencies. In: Conference: International Conference on Grounding, Lightning Physics and Effects (GROUND’ 18). McCutcheon, Farahani, Stednick, Buchleiter, Green (bib53) 2006; 94 Robinet, von Hebel, Govers, van der Kruk, Minella, Schlesner, Ameijeiras-Mariño, Vanderborght (bib68) 2018; 314 Frischknecht (bib25) 1988; Volume 1 James, Waine, Bradley, Taylor, Godwin (bib41) 2003; 86 Blanchy, Watts, Ashton, Webster, Hawkesford, Whalley, Binley (bib5) 2020; 19 Kelly, Acworth, Greve (bib43) 2011; 49 IUSS WRB, 2014. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome. Yunusa, Bellotti, Moore, Probert, Baldock, Miyan (bib80) 2004; 44 Isbell (bib39) 2016 Reinhardt, Herrmann (bib66) 2019; 182 Allred, Ehsani, Saraswat (bib4) 2005; 48 Taylor, Wood, Earl, Godwin (bib74) 2003; 84 Rhoades, Raats, Prather (bib67) 1976; 40 Loke, M., 2001. Tutorial: 2-D and 3-D Electrical Imaging Surveys [WWW Document]. Huang, Kilminster, Barrett-Lennard, Triantafilis (bib34) 2017; 33 Grote, Anger, Kelly, Hubbard, Rubin (bib29) 2010; 15 Flower, K.C., Ward, P.R., Micin, S.F., Coringley, N., 2021. Patterns of crop water use in a long-term rotation trial – GRDC updates [WWW Document]. Corwin, Lesch (bib13) 2013; 18 Blanchy, Watts, Richards, Bussell, Huntenburg, Sparkes, Stalham, Hawkesford, Whalley, Binley (bib6) 2020; 19 Lewinson, E., 2019. outlier_detection_hampel_filter.ipynb [WWW Document]. Fabre, Briottet, Lesaignoux (bib21) 2015; 15 Cook, Smerdon, Seager, Coats (bib12) 2014; 43 Moghadas, Jadoon, McCabe (bib58) 2017; 110 Page, Dang, Dalal, Reeves, Thomas, Wang, Thompson (bib63) 2019; 194 BOM-CSIRO, 2016. Australia’s changing climate [WWW Document]. Zare (10.1016/j.agwat.2021.107246_bib81) 2020; 4 Heathman (10.1016/j.agwat.2021.107246_bib30) 2012; 95 Page (10.1016/j.agwat.2021.107246_bib63) 2019; 194 Keating (10.1016/j.agwat.2021.107246_bib42) 2003; 18 von Hebel (10.1016/j.agwat.2021.107246_bib76) 2014; 50 Huang (10.1016/j.agwat.2021.107246_bib35) 2016; 163 Leopold (10.1016/j.agwat.2021.107246_bib45) 2021; 593 Mananze (10.1016/j.agwat.2021.107246_bib52) 2019; 13 Sasaki (10.1016/j.agwat.2021.107246_bib70) 2001; 46 O’Leary (10.1016/j.agwat.2021.107246_bib62) 1997; 52 Kelly (10.1016/j.agwat.2021.107246_bib43) 2011; 49 Corwin (10.1016/j.agwat.2021.107246_bib13) 2013; 18 Stockmann (10.1016/j.agwat.2021.107246_bib72) 2015; 239–240 Brogi (10.1016/j.agwat.2021.107246_bib11) 2019; 335 Sasaki (10.1016/j.agwat.2021.107246_bib71) 1989; 54 10.1016/j.agwat.2021.107246_bib47 10.1016/j.agwat.2021.107246_bib48 Blanchy (10.1016/j.agwat.2021.107246_bib6) 2020; 19 Tsoar (10.1016/j.agwat.2021.107246_bib77) 2005 Garré (10.1016/j.agwat.2021.107246_bib26) 2013; 12 10.1016/j.agwat.2021.107246_bib65 Loke (10.1016/j.agwat.2021.107246_bib49) 2015 Moghadas (10.1016/j.agwat.2021.107246_bib58) 2017; 110 10.1016/j.agwat.2021.107246_bib60 Garré (10.1016/j.agwat.2021.107246_bib27) 2011; 10 Zhao (10.1016/j.agwat.2021.107246_bib85) 2011; 4 Ma (10.1016/j.agwat.2021.107246_bib51) 2011; 12 Robinet (10.1016/j.agwat.2021.107246_bib68) 2018; 314 Iizumi (10.1016/j.agwat.2021.107246_bib38) 2015; 4 Dai (10.1016/j.agwat.2021.107246_bib15) 2012; 3 10.1016/j.agwat.2021.107246_bib56 Doolittle (10.1016/j.agwat.2021.107246_bib19) 2014; 223–225 Hochman (10.1016/j.agwat.2021.107246_bib32) 2018; 228 Cook (10.1016/j.agwat.2021.107246_bib12) 2014; 43 James (10.1016/j.agwat.2021.107246_bib41) 2003; 86 Rhoades (10.1016/j.agwat.2021.107246_bib67) 1976; 40 Triantafilis (10.1016/j.agwat.2021.107246_bib75) 2013 Angus (10.1016/j.agwat.2021.107246_bib2) 2001; 52 Nielsen (10.1016/j.agwat.2021.107246_bib61) 2018 Lv (10.1016/j.agwat.2021.107246_bib50) 2017; 7 Blanchy (10.1016/j.agwat.2021.107246_bib5) 2020; 19 Flower (10.1016/j.agwat.2021.107246_bib23) 2017; 208 Dakak (10.1016/j.agwat.2021.107246_bib16) 2017; 33 Frischknecht (10.1016/j.agwat.2021.107246_bib25) 1988; Volume 1 Allred (10.1016/j.agwat.2021.107246_bib4) 2005; 48 Corwin (10.1016/j.agwat.2021.107246_bib14) 2005; 46 Abdu (10.1016/j.agwat.2021.107246_bib1) 2017; 4 Reinhardt (10.1016/j.agwat.2021.107246_bib66) 2019; 182 Archie (10.1016/j.agwat.2021.107246_bib3) 1942; 146 Huang (10.1016/j.agwat.2021.107246_bib34) 2017; 33 10.1016/j.agwat.2021.107246_bib8 Brevik (10.1016/j.agwat.2021.107246_bib10) 2004; 5 McCutcheon (10.1016/j.agwat.2021.107246_bib53) 2006; 94 10.1016/j.agwat.2021.107246_bib7 10.1016/j.agwat.2021.107246_bib24 10.1016/j.agwat.2021.107246_bib69 Djaman (10.1016/j.agwat.2021.107246_bib18) 2012; 55 McKenzie (10.1016/j.agwat.2021.107246_bib55) 2000; 11 Delefortrie (10.1016/j.agwat.2021.107246_bib17) 2014; 100 McFarlane (10.1016/j.agwat.2021.107246_bib54) 2020; 103 Monteiro Santos (10.1016/j.agwat.2021.107246_bib59) 2004; 56 Pearson (10.1016/j.agwat.2021.107246_bib64) 2016; 2016 Isbell (10.1016/j.agwat.2021.107246_bib39) 2016 Lesch (10.1016/j.agwat.2021.107246_bib46) 2005; 46 Zhang (10.1016/j.agwat.2021.107246_bib82) 2015; 36 Minasny (10.1016/j.agwat.2021.107246_bib57) 2005 Flower (10.1016/j.agwat.2021.107246_bib22) 2012; 132 Yunusa (10.1016/j.agwat.2021.107246_bib80) 2004; 44 Sudduth (10.1016/j.agwat.2021.107246_bib73) 2003; 95 El-Naggar (10.1016/j.agwat.2021.107246_bib20) 2021; 22 Huntington (10.1016/j.agwat.2021.107246_bib37) 2010 Taylor (10.1016/j.agwat.2021.107246_bib74) 2003; 84 Bradford (10.1016/j.agwat.2021.107246_bib9) 2017; 7 10.1016/j.agwat.2021.107246_bib40 Lavoué (10.1016/j.agwat.2021.107246_bib44) 2010; 8 Von Hebel (10.1016/j.agwat.2021.107246_bib78) 2019; 19 Zhang (10.1016/j.agwat.2021.107246_bib83) 2019; 135 Grote (10.1016/j.agwat.2021.107246_bib29) 2010; 15 Zhao (10.1016/j.agwat.2021.107246_bib84) 2020; 200 Fabre (10.1016/j.agwat.2021.107246_bib21) 2015; 15 Gerssen-Gondelach (10.1016/j.agwat.2021.107246_bib28) 2015; 4 Hedley (10.1016/j.agwat.2021.107246_bib31) 2013; 199 Hossain (10.1016/j.agwat.2021.107246_bib33) 2010; 74 10.1016/j.agwat.2021.107246_bib36 Ward (10.1016/j.agwat.2021.107246_bib79) 2012; 132 |
| References_xml | – volume: 146 start-page: 54 year: 1942 end-page: 62 ident: bib3 article-title: The Electrical Resistivity Log as an aid in determining some reservoir characteristics publication-title: Trans. AIME – volume: 199 start-page: 22 year: 2013 end-page: 29 ident: bib31 article-title: Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling publication-title: Geoderma – volume: 7 start-page: 6081 year: 2017 ident: bib50 article-title: A model-based estimate of regional wheat yield gaps and water use efficiency in main winter wheat production regions of China publication-title: Sci. Rep. – volume: 94 start-page: 19 year: 2006 end-page: 32 ident: bib53 article-title: Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field publication-title: Biosyst. Eng. – volume: 19 start-page: 4753 year: 2019 ident: bib78 article-title: Calibration, conversion, and quantitative multi-layer inversion of multi-coil rigid-boom electromagnetic induction data publication-title: Sensors – ident: bib88 – reference: BOM, 2020. Climate statistics for Australian locations [WWW Document]. – volume: 4 start-page: 135 year: 2017 end-page: 145 ident: bib1 article-title: Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns and gravel lenses publication-title: Front. Agric. Sci. Eng. – volume: 46 start-page: 11 year: 2005 end-page: 43 ident: bib14 article-title: Apparent soil electrical conductivity measurements in agriculture publication-title: Comput. Electron. Agric. – volume: Volume 1 start-page: 364 year: 1988 end-page: 441 ident: bib25 article-title: Electromagnetic Physical Scale Modeling publication-title: Electromagnetic Methods in Applied Geophysics: Theory, Investigations in Geophysics – volume: 33 start-page: 205 year: 2017 end-page: 215 ident: bib34 article-title: Characterization of field-scale dryland salinity with depth by quasi-3d inversion of DUALEM-1 data publication-title: Soil Use Manag. – volume: 12 start-page: 55 year: 2011 end-page: 66 ident: bib51 article-title: Comparing temperature correction models for soil electrical conductivity measurement publication-title: Precis. Agric. – volume: 54 start-page: 254 year: 1989 end-page: 262 ident: bib71 article-title: Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data publication-title: Geophysics – volume: 84 start-page: 441 year: 2003 end-page: 453 ident: bib74 article-title: Soil factors and their influence on within-field crop variability, part Ii: spatial analysis and determination of management zones publication-title: Biosyst. Eng. – volume: 132 start-page: 63 year: 2012 end-page: 75 ident: bib22 article-title: Nitrogen, weed management and economics with cover crops in conservation agriculture in a Mediterranean climate publication-title: F. Crop. Res. – volume: 4 start-page: 36 year: 2015 end-page: 75 ident: bib28 article-title: Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials publication-title: Food Energy Secur. – volume: 593 year: 2021 ident: bib45 article-title: Time lapse electric resistivity tomography to portray infiltration and hydrologic flow paths from surface to cave publication-title: J. Hydrol. – volume: 95 start-page: 91 year: 2012 end-page: 103 ident: bib30 article-title: Multi-scale temporal stability analysis of surface and subsurface soil moisture within the Upper Cedar Creek Watershed, Indiana publication-title: CATENA – volume: 200 year: 2020 ident: bib84 article-title: Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data publication-title: Soil Tillage Res. – volume: 135 start-page: 304 year: 2019 end-page: 315 ident: bib83 article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization publication-title: Soil Biol. Biochem. – start-page: 1 year: 2010 end-page: 53 ident: bib37 article-title: Chapter one – climate warming-induced intensification of the hydrologic cycle: an assessment of the published record and potential impacts on agriculture – reference: IUSS WRB, 2014. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome. – reference: Rallos, R. V., Gultiano, W.A., Vidal, J.F., 2013. Agronomic applicability of non-destructive soil moisture-density measurements using gamma-neutron probe. In: Proceedings of the Annual Meeting and Scientific Conference. Philippines, pp. 83–84. – volume: 86 start-page: 421 year: 2003 end-page: 430 ident: bib41 article-title: Determination of soil type boundaries using electromagnetic induction scanning techniques publication-title: Biosyst. Eng. – volume: 4 start-page: 25 year: 2020 ident: bib81 article-title: Identifying potential leakage zones in an irrigation supply channel by mapping soil properties using electromagnetic induction, inversion modelling and a support vector machine publication-title: Soil Syst. – volume: 10 start-page: 412 year: 2011 end-page: 424 ident: bib27 article-title: Three-dimensional electrical resistivity tomography to monitor root zone water dynamics publication-title: Vadose Zone J. – volume: 50 start-page: 2732 year: 2014 end-page: 2748 ident: bib76 article-title: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data publication-title: Water Resour. Res. – volume: 13 start-page: 1 year: 2019 end-page: 16 ident: bib52 article-title: Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique publication-title: J. Appl. Remote Sens. – start-page: 462 year: 2005 end-page: 471 ident: bib77 article-title: Sand dunes – volume: 19 year: 2020 ident: bib6 article-title: Time‐lapse geophysical assessment of agricultural practices on soil moisture dynamics publication-title: Vadose Zone J. – volume: 314 start-page: 160 year: 2018 end-page: 174 ident: bib68 article-title: Spatial variability of soil water content and soil electrical conductivity across scales derived from Electromagnetic Induction and Time Domain Reflectometry publication-title: Geoderma – ident: bib87 – volume: 12 year: 2013 ident: bib26 article-title: Noninvasive monitoring of soil water dynamics in mixed cropping systems: a case study in Ratchaburi Province, Thailand publication-title: Vadose Zone J. – volume: 239–240 start-page: 115 year: 2015 end-page: 129 ident: bib72 article-title: Landscape-scale exploratory radiometric mapping using proximal soil sensing publication-title: Geoderma – volume: 56 start-page: 123 year: 2004 end-page: 134 ident: bib59 article-title: 1-D laterally constrained inversion of EM34 profiling data publication-title: J. Appl. Geophys. – volume: 52 start-page: 183 year: 2001 end-page: 192 ident: bib2 article-title: Soil water extraction by dryland crops, annual pastures, and lucerne in south-eastern Australia publication-title: Crop Pasture Sci. – volume: 74 start-page: 100 year: 2010 end-page: 109 ident: bib33 article-title: EM38 for volumetric soil water content estimation in the root-zone of deep vertosol soils publication-title: Comput. Electron. Agric. – volume: 2016 start-page: 1 year: 2016 end-page: 18 ident: bib64 article-title: Generalized hampel filters publication-title: EURASIP J. Adv. Signal Process. – reference: Lewinson, E., 2019. outlier_detection_hampel_filter.ipynb [WWW Document]. – volume: 182 start-page: 9 year: 2019 end-page: 27 ident: bib66 article-title: Gamma-ray spectrometry as versatile tool in soil science: a critical review publication-title: J. Plant Nutr. Soil Sci. – reference: Hübner, C., Kaatze, U., 2016. Electromagnetic Moisture Measurement. – volume: 223–225 start-page: 33 year: 2014 end-page: 45 ident: bib19 article-title: The use of electromagnetic induction techniques in soils studies publication-title: Geoderma – volume: 163 start-page: 285 year: 2016 end-page: 294 ident: bib35 article-title: Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging publication-title: Agric. Water Manag. – volume: 18 start-page: 267 year: 2003 end-page: 288 ident: bib42 article-title: An overview of APSIM, a model designed for farming systems simulation publication-title: Eur. J. Agron. – reference: BOM-CSIRO, 2016. Australia’s changing climate [WWW Document]. – volume: 3 start-page: 52 year: 2012 end-page: 58 ident: bib15 article-title: Increasing drought under global warming in observations and models publication-title: Nat. Clim. Change – volume: 110 start-page: 238 year: 2017 end-page: 248 ident: bib58 article-title: Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data publication-title: Adv. Water Resour. – volume: 4 start-page: 36 year: 2011 end-page: 48 ident: bib85 article-title: Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics publication-title: Ecohydrology – volume: 8 start-page: 553 year: 2010 end-page: 561 ident: bib44 article-title: Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography publication-title: Surf. Geophys. – volume: 19 year: 2020 ident: bib5 article-title: Accounting for heterogeneity in the θ–σ relationship: application to wheat phenotyping using EMI publication-title: Vadose Zone J. – volume: 22 start-page: 1045 year: 2021 end-page: 1066 ident: bib20 article-title: Imaging the electrical conductivity of the soil profile and its relationships to soil water patterns and drainage characteristics publication-title: Precis. Agric. – volume: 44 start-page: 787 year: 2004 end-page: 800 ident: bib80 article-title: An exploratory evaluation of APSIM to simulate growth and yield processes for winter cereals in rotation systems in South Australia publication-title: Aust. J. Exp. Agric. – reference: Flower, K.C., Ward, P.R., Micin, S.F., Coringley, N., 2021. Patterns of crop water use in a long-term rotation trial – GRDC updates [WWW Document]. – volume: 33 start-page: 553 year: 2017 end-page: 567 ident: bib16 article-title: Mapping soil salinity in 3-dimensions using an EM38 and EM4Soil inversion modelling at the reconnaissance scale in central Morocco publication-title: Soil Use Manag. – ident: bib86 – start-page: 1 year: 2015 end-page: 5 ident: bib49 article-title: Rapid inversion of data from 2-D and from 3-D resistivity surveys with shifted electrodes publication-title: Near Surface Geoscience 2015 – 21st European Meeting of Environmental and Engineering Geophysics – volume: 40 start-page: 651 year: 1976 end-page: 655 ident: bib67 article-title: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity publication-title: Soil Sci. Soc. Am. J. – volume: 95 start-page: 472 year: 2003 end-page: 482 ident: bib73 article-title: Comparison of electromagnetic induction and direct sensing of soil electrical conductivity publication-title: Agron. J. – volume: 36 start-page: 5015 year: 2015 end-page: 5030 ident: bib82 article-title: Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions publication-title: Int. J. Remote Sens. – volume: 228 start-page: 20 year: 2018 end-page: 30 ident: bib32 article-title: Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia publication-title: F. Crop. Res. – reference: Russell, J.J., 1996. Chemical fallowinga and manipulation of pasture along with early seeding give greater yields and water use of wheat on a sandy clay loam soil. In: Proceedings of 8th Agronomy Conference, The Regional Institute Online Publishing. – volume: 15 start-page: 93 year: 2010 end-page: 110 ident: bib29 article-title: Characterization of soil water content variability and soil texture using GPR groundwave techniques publication-title: J. Environ. Eng. Geophys. – volume: 5 start-page: 145 year: 2004 end-page: 152 ident: bib10 article-title: Effect of Daily Soil Temperature Fluctuations on Soil Electrical Conductivity as Measured with the Geonics® EM-38 publication-title: Precis. Agric. – volume: 103 start-page: 9 year: 2020 end-page: 27 ident: bib54 article-title: Runoff and groundwater responses to climate change in South West Australia publication-title: J. R. Soc. West. Aust. – start-page: 12 year: 2013 ident: bib75 article-title: Inferring the location of preferential flow paths of a leachate plume by using a DUALEM-421 and a quasi-three-dimensional inversion model publication-title: Vadose Zone J. – volume: 208 start-page: 1 year: 2017 end-page: 10 ident: bib23 article-title: Rainfall, rotations and residue level affect no-tillage wheat yield and gross margin in a Mediterranean-type environment publication-title: F. Crop. Res. – volume: 46 start-page: 153 year: 2005 end-page: 179 ident: bib46 article-title: Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties publication-title: Comput. Electron. Agric. – year: 2016 ident: bib39 article-title: The Australian Soil Classification – start-page: 110 year: 2018 ident: bib61 article-title: Soil water extraction for several dryland crops publication-title: Agron. J. – volume: 100 start-page: 14 year: 2014 end-page: 22 ident: bib17 article-title: Frequency domain electromagnetic induction survey in the intertidal zone: limitations of low-induction-number and depth of exploration publication-title: J. Appl. Geophys. – volume: 46 start-page: 45 year: 2001 end-page: 54 ident: bib70 article-title: Full 3-D inversion of electromagnetic data on PC publication-title: J. Appl. Geophys. – volume: 335 start-page: 133 year: 2019 end-page: 148 ident: bib11 article-title: Large-scale soil mapping using multi-configuration EMI and supervised image classification publication-title: Geoderma – volume: 15 start-page: 3262 year: 2015 end-page: 3281 ident: bib21 article-title: Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain publication-title: Sensors – volume: 4 start-page: 46 year: 2015 end-page: 50 ident: bib38 article-title: How do weather and climate influence cropping area and intensity publication-title: Glob. Food Sect. – volume: 7 start-page: 12923 year: 2017 ident: bib9 article-title: Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands publication-title: Sci. Rep. – reference: McNeill, J.D., 1980. Electromagnetic terrain conductivity measurement at low induction numbers. TN-6. Geonics Limited Mississauga, ON, Canada. – year: 2005 ident: bib57 article-title: VESPER version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05 – volume: 11 start-page: 1 year: 2000 end-page: 12 ident: bib55 article-title: Estimation of Soil Properties Using the Atlas of Australian Soils. CSIRO L publication-title: Water Tech. Rep. – reference: . – volume: 18 start-page: 1 year: 2013 end-page: 25 ident: bib13 article-title: Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling publication-title: J. Environ. Eng. Geophys. – volume: 132 start-page: 33 year: 2012 end-page: 39 ident: bib79 article-title: Soil water balance with cover crops and conservation agriculture in a Mediterranean climate publication-title: F. Crop. Res. – volume: 48 start-page: 2123 year: 2005 end-page: 2135 ident: bib4 article-title: The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity publication-title: Trans. ASAE – volume: 43 start-page: 2607 year: 2014 end-page: 2627 ident: bib12 article-title: Global warming and 21st century drying publication-title: Clim. Dyn. – reference: Loke, M., 2001. Tutorial: 2-D and 3-D Electrical Imaging Surveys [WWW Document]. – volume: 55 start-page: 1223 year: 2012 end-page: 1238 ident: bib18 article-title: Soil water extraction patterns and crop, irrigation, and evapotranspiration water use efficiency of maize under full and limited irrigation and rainfed settings publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.) – reference: Moura, R., Pereira, T., Barros, M.T., Alipio, R., Lima, A.C.S., Schroeder, M.A., 2018. Analysis of frequency-dependence of soil resisitivity: emphasis at low frequencies. In: Conference: International Conference on Grounding, Lightning Physics and Effects (GROUND’ 18). – volume: 52 start-page: 209 year: 1997 end-page: 219 ident: bib62 article-title: Stubble retention and tillage in a semi-arid environment: 1. Soil water accumulation during fallow publication-title: F. Crop. Res. – volume: 49 start-page: 504 year: 2011 end-page: 512 ident: bib43 article-title: Better placement of soil moisture point measurements guided by 2D resistivity tomography for improved irrigation scheduling publication-title: Soil Res. – volume: 194 year: 2019 ident: bib63 article-title: Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period publication-title: Soil Tillage Res. – ident: 10.1016/j.agwat.2021.107246_bib47 – volume: 52 start-page: 209 year: 1997 ident: 10.1016/j.agwat.2021.107246_bib62 article-title: Stubble retention and tillage in a semi-arid environment: 1. Soil water accumulation during fallow publication-title: F. Crop. Res. doi: 10.1016/S0378-4290(97)00034-8 – volume: 314 start-page: 160 year: 2018 ident: 10.1016/j.agwat.2021.107246_bib68 article-title: Spatial variability of soil water content and soil electrical conductivity across scales derived from Electromagnetic Induction and Time Domain Reflectometry publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.045 – ident: 10.1016/j.agwat.2021.107246_bib24 – volume: 84 start-page: 441 year: 2003 ident: 10.1016/j.agwat.2021.107246_bib74 article-title: Soil factors and their influence on within-field crop variability, part Ii: spatial analysis and determination of management zones publication-title: Biosyst. Eng. doi: 10.1016/S1537-5110(03)00005-9 – start-page: 110 year: 2018 ident: 10.1016/j.agwat.2021.107246_bib61 article-title: Soil water extraction for several dryland crops publication-title: Agron. J. – volume: 54 start-page: 254 year: 1989 ident: 10.1016/j.agwat.2021.107246_bib71 article-title: Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data publication-title: Geophysics doi: 10.1190/1.1442649 – volume: 19 start-page: 4753 year: 2019 ident: 10.1016/j.agwat.2021.107246_bib78 article-title: Calibration, conversion, and quantitative multi-layer inversion of multi-coil rigid-boom electromagnetic induction data publication-title: Sensors doi: 10.3390/s19214753 – volume: 46 start-page: 11 year: 2005 ident: 10.1016/j.agwat.2021.107246_bib14 article-title: Apparent soil electrical conductivity measurements in agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2004.10.005 – volume: 163 start-page: 285 year: 2016 ident: 10.1016/j.agwat.2021.107246_bib35 article-title: Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.09.003 – volume: 18 start-page: 267 year: 2003 ident: 10.1016/j.agwat.2021.107246_bib42 article-title: An overview of APSIM, a model designed for farming systems simulation publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00108-9 – volume: 135 start-page: 304 year: 2019 ident: 10.1016/j.agwat.2021.107246_bib83 article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.019 – volume: 33 start-page: 553 year: 2017 ident: 10.1016/j.agwat.2021.107246_bib16 article-title: Mapping soil salinity in 3-dimensions using an EM38 and EM4Soil inversion modelling at the reconnaissance scale in central Morocco publication-title: Soil Use Manag. doi: 10.1111/sum.12370 – volume: 593 year: 2021 ident: 10.1016/j.agwat.2021.107246_bib45 article-title: Time lapse electric resistivity tomography to portray infiltration and hydrologic flow paths from surface to cave publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125810 – ident: 10.1016/j.agwat.2021.107246_bib56 – volume: 146 start-page: 54 year: 1942 ident: 10.1016/j.agwat.2021.107246_bib3 article-title: The Electrical Resistivity Log as an aid in determining some reservoir characteristics publication-title: Trans. AIME doi: 10.2118/942054-G – volume: 48 start-page: 2123 year: 2005 ident: 10.1016/j.agwat.2021.107246_bib4 article-title: The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity publication-title: Trans. ASAE doi: 10.13031/2013.20098 – volume: 7 start-page: 6081 year: 2017 ident: 10.1016/j.agwat.2021.107246_bib50 article-title: A model-based estimate of regional wheat yield gaps and water use efficiency in main winter wheat production regions of China publication-title: Sci. Rep. doi: 10.1038/s41598-017-06312-x – volume: 52 start-page: 183 year: 2001 ident: 10.1016/j.agwat.2021.107246_bib2 article-title: Soil water extraction by dryland crops, annual pastures, and lucerne in south-eastern Australia publication-title: Crop Pasture Sci. doi: 10.1071/AR00103 – ident: 10.1016/j.agwat.2021.107246_bib69 – volume: 10 start-page: 412 year: 2011 ident: 10.1016/j.agwat.2021.107246_bib27 article-title: Three-dimensional electrical resistivity tomography to monitor root zone water dynamics publication-title: Vadose Zone J. doi: 10.2136/vzj2010.0079 – volume: 86 start-page: 421 year: 2003 ident: 10.1016/j.agwat.2021.107246_bib41 article-title: Determination of soil type boundaries using electromagnetic induction scanning techniques publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2003.09.001 – volume: 55 start-page: 1223 year: 2012 ident: 10.1016/j.agwat.2021.107246_bib18 article-title: Soil water extraction patterns and crop, irrigation, and evapotranspiration water use efficiency of maize under full and limited irrigation and rainfed settings publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.) – volume: 228 start-page: 20 year: 2018 ident: 10.1016/j.agwat.2021.107246_bib32 article-title: Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2018.08.023 – ident: 10.1016/j.agwat.2021.107246_bib40 – volume: 194 year: 2019 ident: 10.1016/j.agwat.2021.107246_bib63 article-title: Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104319 – ident: 10.1016/j.agwat.2021.107246_bib8 – ident: 10.1016/j.agwat.2021.107246_bib36 doi: 10.17875/gup2016-958 – volume: 11 start-page: 1 year: 2000 ident: 10.1016/j.agwat.2021.107246_bib55 article-title: Estimation of Soil Properties Using the Atlas of Australian Soils. CSIRO L publication-title: Water Tech. Rep. – volume: 4 start-page: 36 year: 2011 ident: 10.1016/j.agwat.2021.107246_bib85 article-title: Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics publication-title: Ecohydrology doi: 10.1002/eco.121 – volume: Volume 1 start-page: 364 year: 1988 ident: 10.1016/j.agwat.2021.107246_bib25 article-title: Electromagnetic Physical Scale Modeling – volume: 56 start-page: 123 year: 2004 ident: 10.1016/j.agwat.2021.107246_bib59 article-title: 1-D laterally constrained inversion of EM34 profiling data publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2004.04.005 – ident: 10.1016/j.agwat.2021.107246_bib65 – ident: 10.1016/j.agwat.2021.107246_bib48 doi: 10.1071/ASEG2001ab075 – volume: 50 start-page: 2732 year: 2014 ident: 10.1016/j.agwat.2021.107246_bib76 article-title: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data publication-title: Water Resour. Res. doi: 10.1002/2013WR014864 – volume: 15 start-page: 3262 year: 2015 ident: 10.1016/j.agwat.2021.107246_bib21 article-title: Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain publication-title: Sensors doi: 10.3390/s150203262 – volume: 46 start-page: 153 year: 2005 ident: 10.1016/j.agwat.2021.107246_bib46 article-title: Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2004.11.004 – year: 2005 ident: 10.1016/j.agwat.2021.107246_bib57 – volume: 110 start-page: 238 year: 2017 ident: 10.1016/j.agwat.2021.107246_bib58 article-title: Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.10.019 – volume: 132 start-page: 33 year: 2012 ident: 10.1016/j.agwat.2021.107246_bib79 article-title: Soil water balance with cover crops and conservation agriculture in a Mediterranean climate publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2011.10.017 – volume: 74 start-page: 100 year: 2010 ident: 10.1016/j.agwat.2021.107246_bib33 article-title: EM38 for volumetric soil water content estimation in the root-zone of deep vertosol soils publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2010.07.003 – volume: 44 start-page: 787 year: 2004 ident: 10.1016/j.agwat.2021.107246_bib80 article-title: An exploratory evaluation of APSIM to simulate growth and yield processes for winter cereals in rotation systems in South Australia publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA03121 – volume: 18 start-page: 1 year: 2013 ident: 10.1016/j.agwat.2021.107246_bib13 article-title: Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling publication-title: J. Environ. Eng. Geophys. doi: 10.2113/JEEG18.1.1 – volume: 12 year: 2013 ident: 10.1016/j.agwat.2021.107246_bib26 article-title: Noninvasive monitoring of soil water dynamics in mixed cropping systems: a case study in Ratchaburi Province, Thailand publication-title: Vadose Zone J. doi: 10.2136/vzj2012.0129 – volume: 95 start-page: 472 year: 2003 ident: 10.1016/j.agwat.2021.107246_bib73 article-title: Comparison of electromagnetic induction and direct sensing of soil electrical conductivity publication-title: Agron. J. doi: 10.2134/agronj2003.4720 – volume: 95 start-page: 91 year: 2012 ident: 10.1016/j.agwat.2021.107246_bib30 article-title: Multi-scale temporal stability analysis of surface and subsurface soil moisture within the Upper Cedar Creek Watershed, Indiana publication-title: CATENA doi: 10.1016/j.catena.2012.03.008 – start-page: 1 year: 2015 ident: 10.1016/j.agwat.2021.107246_bib49 article-title: Rapid inversion of data from 2-D and from 3-D resistivity surveys with shifted electrodes – volume: 199 start-page: 22 year: 2013 ident: 10.1016/j.agwat.2021.107246_bib31 article-title: Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling publication-title: Geoderma doi: 10.1016/j.geoderma.2012.07.018 – volume: 19 year: 2020 ident: 10.1016/j.agwat.2021.107246_bib6 article-title: Time‐lapse geophysical assessment of agricultural practices on soil moisture dynamics publication-title: Vadose Zone J. doi: 10.1002/vzj2.20080 – volume: 4 start-page: 135 year: 2017 ident: 10.1016/j.agwat.2021.107246_bib1 article-title: Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns and gravel lenses publication-title: Front. Agric. Sci. Eng. doi: 10.15302/J-FASE-2017143 – volume: 19 year: 2020 ident: 10.1016/j.agwat.2021.107246_bib5 article-title: Accounting for heterogeneity in the θ–σ relationship: application to wheat phenotyping using EMI publication-title: Vadose Zone J. doi: 10.1002/vzj2.20037 – year: 2016 ident: 10.1016/j.agwat.2021.107246_bib39 – volume: 103 start-page: 9 year: 2020 ident: 10.1016/j.agwat.2021.107246_bib54 article-title: Runoff and groundwater responses to climate change in South West Australia publication-title: J. R. Soc. West. Aust. – start-page: 1 year: 2010 ident: 10.1016/j.agwat.2021.107246_bib37 article-title: Chapter one – climate warming-induced intensification of the hydrologic cycle: an assessment of the published record and potential impacts on agriculture – ident: 10.1016/j.agwat.2021.107246_bib60 – volume: 182 start-page: 9 year: 2019 ident: 10.1016/j.agwat.2021.107246_bib66 article-title: Gamma-ray spectrometry as versatile tool in soil science: a critical review publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201700447 – ident: 10.1016/j.agwat.2021.107246_bib7 – volume: 49 start-page: 504 year: 2011 ident: 10.1016/j.agwat.2021.107246_bib43 article-title: Better placement of soil moisture point measurements guided by 2D resistivity tomography for improved irrigation scheduling publication-title: Soil Res. doi: 10.1071/SR11145 – volume: 36 start-page: 5015 year: 2015 ident: 10.1016/j.agwat.2021.107246_bib82 article-title: Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1055610 – volume: 15 start-page: 93 year: 2010 ident: 10.1016/j.agwat.2021.107246_bib29 article-title: Characterization of soil water content variability and soil texture using GPR groundwave techniques publication-title: J. Environ. Eng. Geophys. doi: 10.2113/JEEG15.3.93 – volume: 22 start-page: 1045 year: 2021 ident: 10.1016/j.agwat.2021.107246_bib20 article-title: Imaging the electrical conductivity of the soil profile and its relationships to soil water patterns and drainage characteristics publication-title: Precis. Agric. doi: 10.1007/s11119-020-09763-x – volume: 132 start-page: 63 year: 2012 ident: 10.1016/j.agwat.2021.107246_bib22 article-title: Nitrogen, weed management and economics with cover crops in conservation agriculture in a Mediterranean climate publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2011.09.011 – volume: 239–240 start-page: 115 year: 2015 ident: 10.1016/j.agwat.2021.107246_bib72 article-title: Landscape-scale exploratory radiometric mapping using proximal soil sensing publication-title: Geoderma doi: 10.1016/j.geoderma.2014.10.005 – volume: 4 start-page: 25 year: 2020 ident: 10.1016/j.agwat.2021.107246_bib81 article-title: Identifying potential leakage zones in an irrigation supply channel by mapping soil properties using electromagnetic induction, inversion modelling and a support vector machine publication-title: Soil Syst. doi: 10.3390/soilsystems4020025 – volume: 40 start-page: 651 year: 1976 ident: 10.1016/j.agwat.2021.107246_bib67 article-title: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1976.03615995004000050017x – volume: 4 start-page: 36 year: 2015 ident: 10.1016/j.agwat.2021.107246_bib28 article-title: Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials publication-title: Food Energy Secur. doi: 10.1002/fes3.53 – volume: 4 start-page: 46 year: 2015 ident: 10.1016/j.agwat.2021.107246_bib38 article-title: How do weather and climate influence cropping area and intensity publication-title: Glob. Food Sect. doi: 10.1016/j.gfs.2014.11.003 – volume: 33 start-page: 205 year: 2017 ident: 10.1016/j.agwat.2021.107246_bib34 article-title: Characterization of field-scale dryland salinity with depth by quasi-3d inversion of DUALEM-1 data publication-title: Soil Use Manag. doi: 10.1111/sum.12345 – volume: 200 year: 2020 ident: 10.1016/j.agwat.2021.107246_bib84 article-title: Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data publication-title: Soil Tillage Res. doi: 10.1016/j.still.2020.104618 – volume: 3 start-page: 52 year: 2012 ident: 10.1016/j.agwat.2021.107246_bib15 article-title: Increasing drought under global warming in observations and models publication-title: Nat. Clim. Change doi: 10.1038/nclimate1633 – volume: 13 start-page: 1 year: 2019 ident: 10.1016/j.agwat.2021.107246_bib52 article-title: Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.13.024519 – volume: 5 start-page: 145 year: 2004 ident: 10.1016/j.agwat.2021.107246_bib10 article-title: Effect of Daily Soil Temperature Fluctuations on Soil Electrical Conductivity as Measured with the Geonics® EM-38 publication-title: Precis. Agric. doi: 10.1023/B:PRAG.0000022359.79184.92 – volume: 46 start-page: 45 year: 2001 ident: 10.1016/j.agwat.2021.107246_bib70 article-title: Full 3-D inversion of electromagnetic data on PC publication-title: J. Appl. Geophys. doi: 10.1016/S0926-9851(00)00038-0 – volume: 335 start-page: 133 year: 2019 ident: 10.1016/j.agwat.2021.107246_bib11 article-title: Large-scale soil mapping using multi-configuration EMI and supervised image classification publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.001 – start-page: 12 year: 2013 ident: 10.1016/j.agwat.2021.107246_bib75 article-title: Inferring the location of preferential flow paths of a leachate plume by using a DUALEM-421 and a quasi-three-dimensional inversion model publication-title: Vadose Zone J. – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.agwat.2021.107246_bib64 article-title: Generalized hampel filters publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-016-0383-6 – volume: 7 start-page: 12923 year: 2017 ident: 10.1016/j.agwat.2021.107246_bib9 article-title: Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands publication-title: Sci. Rep. doi: 10.1038/s41598-017-13165-x – volume: 208 start-page: 1 year: 2017 ident: 10.1016/j.agwat.2021.107246_bib23 article-title: Rainfall, rotations and residue level affect no-tillage wheat yield and gross margin in a Mediterranean-type environment publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2017.03.012 – volume: 12 start-page: 55 year: 2011 ident: 10.1016/j.agwat.2021.107246_bib51 article-title: Comparing temperature correction models for soil electrical conductivity measurement publication-title: Precis. Agric. doi: 10.1007/s11119-009-9156-7 – volume: 43 start-page: 2607 year: 2014 ident: 10.1016/j.agwat.2021.107246_bib12 article-title: Global warming and 21st century drying publication-title: Clim. Dyn. doi: 10.1007/s00382-014-2075-y – volume: 100 start-page: 14 year: 2014 ident: 10.1016/j.agwat.2021.107246_bib17 article-title: Frequency domain electromagnetic induction survey in the intertidal zone: limitations of low-induction-number and depth of exploration publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2013.10.005 – volume: 8 start-page: 553 year: 2010 ident: 10.1016/j.agwat.2021.107246_bib44 article-title: Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography publication-title: Surf. Geophys. doi: 10.3997/1873-0604.2010037 – volume: 94 start-page: 19 year: 2006 ident: 10.1016/j.agwat.2021.107246_bib53 article-title: Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2006.01.002 – start-page: 462 year: 2005 ident: 10.1016/j.agwat.2021.107246_bib77 article-title: Sand dunes – volume: 223–225 start-page: 33 year: 2014 ident: 10.1016/j.agwat.2021.107246_bib19 article-title: The use of electromagnetic induction techniques in soils studies publication-title: Geoderma doi: 10.1016/j.geoderma.2014.01.027 |
| SSID | ssj0004047 |
| Score | 2.3914173 |
| Snippet | Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107246 |
| SubjectTerms | algorithms Crop rotation dry season electrical conductivity Electrical resistivity tomography EM inversion laboratory experimentation neutrons prediction soil depth soil profiles Soil volumetric water content soil water volumetric water content water management wet season |
| Title | Quasi-3D mapping of soil moisture in agricultural fields using electrical conductivity sensing |
| URI | https://dx.doi.org/10.1016/j.agwat.2021.107246 https://www.proquest.com/docview/2636811594 |
| Volume | 259 |
| WOSCitedRecordID | wos000711635400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2283 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004047 issn: 0378-3774 databaseCode: AIEXJ dateStart: 19950401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKcoLxmJW8gqa2dj51iVosKhAlGkPWH5lZLSTVabDfTnM46dzbYrVvTAJYqiZGTl-zIeT8bzIfTWOpU3LnmstS7iNFM6lopnMaFGZdKyaR7EJtjJCZ_N8s-hdKjp5ARYVfHLy3zxX6GGawC22zp7A7jXRuECnAPocATY4fhPwH9pZVPG9H00l4tFqGlu6vIimtcAqftfUFaRPFsOTTe6KrYmaru0gdfFCX1DKtcN1stLNK7SPUxzfdfaTSO_pWu3ON-qpvn6Q7Y_Zefqj8ulHPji5NnCzqDocDwUBjnVBq907KTIS3klMUHIRmIibMhylRfMi_D0zpaE_t_eXcLak_gM5JYn90mF87E8g_HDOp5MxsPdV_tmX5vP1lWGfQHbueiMCGdEeCO30R4BHvIR2jv4eDT7NGylTTpNuvXY-0ZVXUng1lj-Fsxcm9a7WOX0AbofFhn4wJPjIbplq0fo3gCXfYy-9zTBgSa4LrCjCe5pgssKb9IEe5rgjiZ4oAnepAkONHmCvn04Oj08joPWRqwpzVYxsZZoS7jNi6lWJsmLicxZbgiEiIwXzGqqFJsyU9CpUcZkhOgCXotWiibcSPoUjaq6ss8QzhOi00SlKTUuWKccgt5M2ZTZoiBmku4j0r80oUMjeqeHciF2ALaP3q0fWvg-LLtvz3o0RAglfYgogF-7H3zTYyfA0bq_Z7KyddsIktGMw_opT5_fbCwv0N3h83iJRqtla1-hO_rXqmyWrwMB_wBWfaWg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-3D+mapping+of+soil+moisture+in+agricultural+fields+using+electrical+conductivity+sensing&rft.jtitle=Agricultural+water+management&rft.au=Shaukat%2C+Hira&rft.au=Flower%2C+Ken+C.&rft.au=Leopold%2C+Matthias&rft.date=2022-01-01&rft.issn=0378-3774&rft.volume=259&rft.spage=107246&rft_id=info:doi/10.1016%2Fj.agwat.2021.107246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agwat_2021_107246 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |