Quasi-3D mapping of soil moisture in agricultural fields using electrical conductivity sensing

Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in non-invasive electromagnetic induction (EMI) techniques have created an opportunity to determine soil moisture content with high-resolution and min...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Agricultural water management Ročník 259; s. 107246
Hlavní autori: Shaukat, Hira, Flower, Ken C., Leopold, Matthias
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2022
Predmet:
ISSN:0378-3774, 1873-2283
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in non-invasive electromagnetic induction (EMI) techniques have created an opportunity to determine soil moisture content with high-resolution and minimal soil intrusion. So far, EMI has mainly been used for homogenous soil conditions, which are not common in agriculture and results are mainly validated by excavated pits or calibration models using soil samples on a transect. This study converts apparent electrical conductivity data recorded with a Dualem-1Hs EM-metre for two surveys of variable moisture conditions (dry and wet season) with 2475 and 2174 data points over 5.4 ha, in a field with a contrasting vertical soil profile into spatiotemporal management zones. A least square inversion algorithm was used to determine electrical conductivities for individual soil layers of 0–0.5 m, 0.5–0.8 m and 0.8–1.6 m. Soil samples from the depth of 0.5 m and 0.8 m were used for soil moisture calibrations. A laboratory experiment under controlled conditions developed electric conductivity vs volumetric water content relations with power law functions for required soil depth slices with R2 values between 0.98 and 0.99. Subsequently, EMI data were converted to volumetric water contents for each layer and predictions were spatially displayed. Median change between the measured apparent conductivity and inverted values range from 6 to 17 mS m-1 resulting in 3–7% difference in volumetric water prediction. These EMI based soil moisture predictions were compared with neutron moisture metre measurements, with Pearson R values of 0.74 and 0.95 for the wet and dry season surveys, respectively. The method is robust and offers a comparatively fast method to estimate the soil moisture status in fields and subsequently make informed management decisions. •An electromagnetic induction survey was used for field soil moisture prediction.•Electrical resistivity–soil moisture calibrations were established for two depths.•The calibrations were used to convert soil conductivity to volumetric moisture.•Soil moisture was accurately predicted at three depths for dry and wet seasons.•Inversion improved soil moisture estimation over the soil profile.
AbstractList Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in non-invasive electromagnetic induction (EMI) techniques have created an opportunity to determine soil moisture content with high-resolution and minimal soil intrusion. So far, EMI has mainly been used for homogenous soil conditions, which are not common in agriculture and results are mainly validated by excavated pits or calibration models using soil samples on a transect. This study converts apparent electrical conductivity data recorded with a Dualem-1Hs EM-metre for two surveys of variable moisture conditions (dry and wet season) with 2475 and 2174 data points over 5.4 ha, in a field with a contrasting vertical soil profile into spatiotemporal management zones. A least square inversion algorithm was used to determine electrical conductivities for individual soil layers of 0–0.5 m, 0.5–0.8 m and 0.8–1.6 m. Soil samples from the depth of 0.5 m and 0.8 m were used for soil moisture calibrations. A laboratory experiment under controlled conditions developed electric conductivity vs volumetric water content relations with power law functions for required soil depth slices with R² values between 0.98 and 0.99. Subsequently, EMI data were converted to volumetric water contents for each layer and predictions were spatially displayed. Median change between the measured apparent conductivity and inverted values range from 6 to 17 mS m⁻¹ resulting in 3–7% difference in volumetric water prediction. These EMI based soil moisture predictions were compared with neutron moisture metre measurements, with Pearson R values of 0.74 and 0.95 for the wet and dry season surveys, respectively. The method is robust and offers a comparatively fast method to estimate the soil moisture status in fields and subsequently make informed management decisions.
Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in non-invasive electromagnetic induction (EMI) techniques have created an opportunity to determine soil moisture content with high-resolution and minimal soil intrusion. So far, EMI has mainly been used for homogenous soil conditions, which are not common in agriculture and results are mainly validated by excavated pits or calibration models using soil samples on a transect. This study converts apparent electrical conductivity data recorded with a Dualem-1Hs EM-metre for two surveys of variable moisture conditions (dry and wet season) with 2475 and 2174 data points over 5.4 ha, in a field with a contrasting vertical soil profile into spatiotemporal management zones. A least square inversion algorithm was used to determine electrical conductivities for individual soil layers of 0–0.5 m, 0.5–0.8 m and 0.8–1.6 m. Soil samples from the depth of 0.5 m and 0.8 m were used for soil moisture calibrations. A laboratory experiment under controlled conditions developed electric conductivity vs volumetric water content relations with power law functions for required soil depth slices with R2 values between 0.98 and 0.99. Subsequently, EMI data were converted to volumetric water contents for each layer and predictions were spatially displayed. Median change between the measured apparent conductivity and inverted values range from 6 to 17 mS m-1 resulting in 3–7% difference in volumetric water prediction. These EMI based soil moisture predictions were compared with neutron moisture metre measurements, with Pearson R values of 0.74 and 0.95 for the wet and dry season surveys, respectively. The method is robust and offers a comparatively fast method to estimate the soil moisture status in fields and subsequently make informed management decisions. •An electromagnetic induction survey was used for field soil moisture prediction.•Electrical resistivity–soil moisture calibrations were established for two depths.•The calibrations were used to convert soil conductivity to volumetric moisture.•Soil moisture was accurately predicted at three depths for dry and wet seasons.•Inversion improved soil moisture estimation over the soil profile.
ArticleNumber 107246
Author Shaukat, Hira
Flower, Ken C.
Leopold, Matthias
Author_xml – sequence: 1
  givenname: Hira
  surname: Shaukat
  fullname: Shaukat, Hira
  organization: UWA School of Agriculture and Environment, soil matrix group, The University of Western Australia, Stirling Highway, Crawley, WA 6009, Australia
– sequence: 2
  givenname: Ken C.
  surname: Flower
  fullname: Flower, Ken C.
  organization: UWA School of Agriculture and Environment, soil matrix group, The University of Western Australia, Stirling Highway, Crawley, WA 6009, Australia
– sequence: 3
  givenname: Matthias
  surname: Leopold
  fullname: Leopold, Matthias
  email: matthias.leopold@uwa.edu.au
  organization: UWA School of Agriculture and Environment, soil matrix group, The University of Western Australia, Stirling Highway, Crawley, WA 6009, Australia
BookMark eNqFkD1vFDEQhi0UJC6BX0DjMs0e_thb7xYponwAUiSEBC2W1x6f5uSzL7Y3Uf49Po6KIlSjmXmfkeY5J2cxRSDkI2drzvjwabc222dT14IJ3iZK9MMbsuKjkp0QozwjKybV2Eml-nfkvJQdY6xnvVqRX98XU7CTt3RvDgeMW5o8LQkD3ScsdclAMVKzzWiX0FoTqEcIrtClHNMQwNa2bHOboltsxSesL7RAPO7fk7fehAIf_tYL8vP-7sfNl-7h2-evN9cPnZVyqJ0AEBbECJPf2NmxyXMzqckJNgo1egVWzrPaKOflxs3ODUJY3z638yzZ6Iy8IJenu4ecHhcoVe-xWAjBREhL0WKQw8j5ZupbVJ6iNqdSMnh9yLg3-UVzpo829U7_samPNvXJZqOmfyiL1VRMsWaD4T_s1YmFZuAJIetiEaIFh7nZ0y7hq_xvSFSV7Q
CitedBy_id crossref_primary_10_3390_app15147766
crossref_primary_10_1016_j_still_2023_105953
crossref_primary_10_1088_1755_1315_1458_1_012014
crossref_primary_10_1016_j_atech_2023_100330
crossref_primary_10_3389_fenvs_2022_883533
crossref_primary_10_3390_rs15112932
crossref_primary_10_1002_ldr_4505
crossref_primary_10_1016_j_jhydrol_2024_131994
Cites_doi 10.1016/S0378-4290(97)00034-8
10.1016/j.geoderma.2017.10.045
10.1016/S1537-5110(03)00005-9
10.1190/1.1442649
10.3390/s19214753
10.1016/j.compag.2004.10.005
10.1016/j.agwat.2015.09.003
10.1016/S1161-0301(02)00108-9
10.1016/j.soilbio.2019.05.019
10.1111/sum.12370
10.1016/j.jhydrol.2020.125810
10.2118/942054-G
10.13031/2013.20098
10.1038/s41598-017-06312-x
10.1071/AR00103
10.2136/vzj2010.0079
10.1016/j.biosystemseng.2003.09.001
10.1016/j.fcr.2018.08.023
10.1016/j.still.2019.104319
10.17875/gup2016-958
10.1002/eco.121
10.1016/j.jappgeo.2004.04.005
10.1071/ASEG2001ab075
10.1002/2013WR014864
10.3390/s150203262
10.1016/j.compag.2004.11.004
10.1016/j.advwatres.2017.10.019
10.1016/j.fcr.2011.10.017
10.1016/j.compag.2010.07.003
10.1071/EA03121
10.2113/JEEG18.1.1
10.2136/vzj2012.0129
10.2134/agronj2003.4720
10.1016/j.catena.2012.03.008
10.1016/j.geoderma.2012.07.018
10.1002/vzj2.20080
10.15302/J-FASE-2017143
10.1002/vzj2.20037
10.1002/jpln.201700447
10.1071/SR11145
10.1080/01431161.2015.1055610
10.2113/JEEG15.3.93
10.1007/s11119-020-09763-x
10.1016/j.fcr.2011.09.011
10.1016/j.geoderma.2014.10.005
10.3390/soilsystems4020025
10.2136/sssaj1976.03615995004000050017x
10.1002/fes3.53
10.1016/j.gfs.2014.11.003
10.1111/sum.12345
10.1016/j.still.2020.104618
10.1038/nclimate1633
10.1117/1.JRS.13.024519
10.1023/B:PRAG.0000022359.79184.92
10.1016/S0926-9851(00)00038-0
10.1016/j.geoderma.2018.08.001
10.1186/s13634-016-0383-6
10.1038/s41598-017-13165-x
10.1016/j.fcr.2017.03.012
10.1007/s11119-009-9156-7
10.1007/s00382-014-2075-y
10.1016/j.jappgeo.2013.10.005
10.3997/1873-0604.2010037
10.1016/j.biosystemseng.2006.01.002
10.1016/j.geoderma.2014.01.027
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.agwat.2021.107246
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
ExternalDocumentID 10_1016_j_agwat_2021_107246
S0378377421005230
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HVGLF
HZ~
R2-
SEP
SEW
VH1
WUQ
XPP
ZMT
~HD
7S9
L.6
ID FETCH-LOGICAL-c336t-2ee2ce28e9f5cbd09f1a979d208278f7ec3bb757df35dbdd622cf101cbb308da3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711635400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-3774
IngestDate Sun Nov 09 11:39:14 EST 2025
Tue Nov 18 21:02:23 EST 2025
Sat Nov 29 07:10:15 EST 2025
Fri Feb 23 02:46:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrical resistivity tomography
EM inversion
Soil volumetric water content
Crop rotation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-2ee2ce28e9f5cbd09f1a979d208278f7ec3bb757df35dbdd622cf101cbb308da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636811594
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636811594
crossref_primary_10_1016_j_agwat_2021_107246
crossref_citationtrail_10_1016_j_agwat_2021_107246
elsevier_sciencedirect_doi_10_1016_j_agwat_2021_107246
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Agricultural water management
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Li, Zare, Wang, Triantafilis (bib84) 2020; 200
Minasny, McBratney, Whelan (bib57) 2005
Flower, Ward, Cordingley, Micin, Craig (bib23) 2017; 208
Iizumi, Ramankutty (bib38) 2015; 4
Stockmann, Malone, McBratney, Minasny (bib72) 2015; 239–240
Ward, Flower, Cordingley, Weeks, Micin (bib79) 2012; 132
Archie (bib3) 1942; 146
Garré, Coteur, Wongleecharoen, Kongkaew, Diels, Vanderborght (bib26) 2013; 12
Doolittle, Brevik (bib19) 2014; 223–225
Delefortrie, Saey, Van De Vijver, De Smedt, Missiaen, Demerre, Van Meirvenne (bib17) 2014; 100
Brogi, Huisman, Pätzold, von Hebel, Weihermüller, Kaufmann, van der Kruk, Vereecken (bib11) 2019; 335
Hossain, Lamb, Lockwood, P, Frazier (bib33) 2010; 74
Tsoar (bib77) 2005
Huntington (bib37) 2010
Lesch (bib46) 2005; 46
Lavoué, Kruk, Rings, Andre, Moghadas, Huisman, Lambot, Weihermüller, Vanderborght, Vereecken (bib44) 2010; 8
McKenzie, Jacquier, Gregory, Cresswell (bib55) 2000; 11
Hochman, Horan (bib32) 2018; 228
Huang, Scudiero, Choo, Corwin, Triantafilis (bib35) 2016; 163
McFarlane, George, Ruprecht, Charles, Hodgson (bib54) 2020; 103
Hübner, C., Kaatze, U., 2016. Electromagnetic Moisture Measurement.
Pearson, Neuvo, Astola, Gabbouj (bib64) 2016; 2016
von Hebel, Rudolph, Mester, Huisman, Kumbhar, Vereecken, van der Kruk (bib76) 2014; 50
Loke, Wilkinson, Chambers (bib49) 2015
Heathman, Cosh, Merwade, Han (bib30) 2012; 95
Dakak, Huang, Zouahri, Douaik, Triantafilis (bib16) 2017; 33
Russell, J.J., 1996. Chemical fallowinga and manipulation of pasture along with early seeding give greater yields and water use of wheat on a sandy clay loam soil. In: Proceedings of 8th Agronomy Conference, The Regional Institute Online Publishing.
Sudduth, Kitchen, Bollero, Bullock, Wiebold (bib73) 2003; 95
Zare, Li, Khongnawang, Farzamian, Triantafilis (bib81) 2020; 4
O’Leary, Connor (bib62) 1997; 52
Monteiro Santos (bib59) 2004; 56
Leopold, Gupanis-Broadway, Baker, Hankin, Treble (bib45) 2021; 593
BOM, 2020. Climate statistics for Australian locations [WWW Document].
Mananze, Pôças, Cunha (bib52) 2019; 13
Brevik, Fenton, Horton (bib10) 2004; 5
Flower, Cordingley, Ward, Weeks (bib22) 2012; 132
bib87
bib88
.
bib86
Sasaki (bib71) 1989; 54
Zhang, Zheng, Noll, Hu, Wanek (bib83) 2019; 135
Djaman, Irmak (bib18) 2012; 55
Keating, Carberry, Hammer, Probert, Robertson, Holzworth, Huth, Hargreaves, Meinke, Hochman, McLean, Verburg, Snow, Dimes, Silburn, Wang, Brown, Bristow, Asseng, Chapman, McCown, Freebairn, Smith (bib42) 2003; 18
Triantafilis, Ribeiro, Page, Monteiro Santos (bib75) 2013
Von Hebel, der Kruk, Huisman, Mester, Altdorff, Endres, Zimmermann, Garré, Vereecken, H (bib78) 2019; 19
Gerssen-Gondelach, Wicke, Faaij (bib28) 2015; 4
Sasaki (bib70) 2001; 46
Abdu, Robinson, Boettinger, Jones (bib1) 2017; 4
Angus, Gault, Peoples, Stapper, Herwaarden (bib2) 2001; 52
Zhang, Li, Tang, Tang, Wu, Lu, Shao (bib82) 2015; 36
Bradford, Schlaepfer, Lauenroth, Yackulic, Duniway, Hall, Jia, Jamiyansharav, Munson, Wilson, Tietjen (bib9) 2017; 7
Corwin, Lesch (bib14) 2005; 46
Zhao, Peth, Hallett, Wang, Giese, Gao, Horn (bib85) 2011; 4
Nielsen, Vigil (bib61) 2018
Garré, Javaux, Vanderborght, Pagès, Vereecken (bib27) 2011; 10
Ma, McBratney, Whelan, Minasny, Short (bib51) 2011; 12
McNeill, J.D., 1980. Electromagnetic terrain conductivity measurement at low induction numbers. TN-6. Geonics Limited Mississauga, ON, Canada.
El-Naggar, Hedley, Roudier, Horne, Clothier (bib20) 2021; 22
Rallos, R. V., Gultiano, W.A., Vidal, J.F., 2013. Agronomic applicability of non-destructive soil moisture-density measurements using gamma-neutron probe. In: Proceedings of the Annual Meeting and Scientific Conference. Philippines, pp. 83–84.
Hedley, Roudier, Yule, Ekanayake, Bradbury (bib31) 2013; 199
Lv, Liu, Cao, Zhu (bib50) 2017; 7
Dai (bib15) 2012; 3
Moura, R., Pereira, T., Barros, M.T., Alipio, R., Lima, A.C.S., Schroeder, M.A., 2018. Analysis of frequency-dependence of soil resisitivity: emphasis at low frequencies. In: Conference: International Conference on Grounding, Lightning Physics and Effects (GROUND’ 18).
McCutcheon, Farahani, Stednick, Buchleiter, Green (bib53) 2006; 94
Robinet, von Hebel, Govers, van der Kruk, Minella, Schlesner, Ameijeiras-Mariño, Vanderborght (bib68) 2018; 314
Frischknecht (bib25) 1988; Volume 1
James, Waine, Bradley, Taylor, Godwin (bib41) 2003; 86
Blanchy, Watts, Ashton, Webster, Hawkesford, Whalley, Binley (bib5) 2020; 19
Kelly, Acworth, Greve (bib43) 2011; 49
IUSS WRB, 2014. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome.
Yunusa, Bellotti, Moore, Probert, Baldock, Miyan (bib80) 2004; 44
Isbell (bib39) 2016
Reinhardt, Herrmann (bib66) 2019; 182
Allred, Ehsani, Saraswat (bib4) 2005; 48
Taylor, Wood, Earl, Godwin (bib74) 2003; 84
Rhoades, Raats, Prather (bib67) 1976; 40
Loke, M., 2001. Tutorial: 2-D and 3-D Electrical Imaging Surveys [WWW Document].
Huang, Kilminster, Barrett-Lennard, Triantafilis (bib34) 2017; 33
Grote, Anger, Kelly, Hubbard, Rubin (bib29) 2010; 15
Flower, K.C., Ward, P.R., Micin, S.F., Coringley, N., 2021. Patterns of crop water use in a long-term rotation trial – GRDC updates [WWW Document].
Corwin, Lesch (bib13) 2013; 18
Blanchy, Watts, Richards, Bussell, Huntenburg, Sparkes, Stalham, Hawkesford, Whalley, Binley (bib6) 2020; 19
Lewinson, E., 2019. outlier_detection_hampel_filter.ipynb [WWW Document].
Fabre, Briottet, Lesaignoux (bib21) 2015; 15
Cook, Smerdon, Seager, Coats (bib12) 2014; 43
Moghadas, Jadoon, McCabe (bib58) 2017; 110
Page, Dang, Dalal, Reeves, Thomas, Wang, Thompson (bib63) 2019; 194
BOM-CSIRO, 2016. Australia’s changing climate [WWW Document].
Zare (10.1016/j.agwat.2021.107246_bib81) 2020; 4
Heathman (10.1016/j.agwat.2021.107246_bib30) 2012; 95
Page (10.1016/j.agwat.2021.107246_bib63) 2019; 194
Keating (10.1016/j.agwat.2021.107246_bib42) 2003; 18
von Hebel (10.1016/j.agwat.2021.107246_bib76) 2014; 50
Huang (10.1016/j.agwat.2021.107246_bib35) 2016; 163
Leopold (10.1016/j.agwat.2021.107246_bib45) 2021; 593
Mananze (10.1016/j.agwat.2021.107246_bib52) 2019; 13
Sasaki (10.1016/j.agwat.2021.107246_bib70) 2001; 46
O’Leary (10.1016/j.agwat.2021.107246_bib62) 1997; 52
Kelly (10.1016/j.agwat.2021.107246_bib43) 2011; 49
Corwin (10.1016/j.agwat.2021.107246_bib13) 2013; 18
Stockmann (10.1016/j.agwat.2021.107246_bib72) 2015; 239–240
Brogi (10.1016/j.agwat.2021.107246_bib11) 2019; 335
Sasaki (10.1016/j.agwat.2021.107246_bib71) 1989; 54
10.1016/j.agwat.2021.107246_bib47
10.1016/j.agwat.2021.107246_bib48
Blanchy (10.1016/j.agwat.2021.107246_bib6) 2020; 19
Tsoar (10.1016/j.agwat.2021.107246_bib77) 2005
Garré (10.1016/j.agwat.2021.107246_bib26) 2013; 12
10.1016/j.agwat.2021.107246_bib65
Loke (10.1016/j.agwat.2021.107246_bib49) 2015
Moghadas (10.1016/j.agwat.2021.107246_bib58) 2017; 110
10.1016/j.agwat.2021.107246_bib60
Garré (10.1016/j.agwat.2021.107246_bib27) 2011; 10
Zhao (10.1016/j.agwat.2021.107246_bib85) 2011; 4
Ma (10.1016/j.agwat.2021.107246_bib51) 2011; 12
Robinet (10.1016/j.agwat.2021.107246_bib68) 2018; 314
Iizumi (10.1016/j.agwat.2021.107246_bib38) 2015; 4
Dai (10.1016/j.agwat.2021.107246_bib15) 2012; 3
10.1016/j.agwat.2021.107246_bib56
Doolittle (10.1016/j.agwat.2021.107246_bib19) 2014; 223–225
Hochman (10.1016/j.agwat.2021.107246_bib32) 2018; 228
Cook (10.1016/j.agwat.2021.107246_bib12) 2014; 43
James (10.1016/j.agwat.2021.107246_bib41) 2003; 86
Rhoades (10.1016/j.agwat.2021.107246_bib67) 1976; 40
Triantafilis (10.1016/j.agwat.2021.107246_bib75) 2013
Angus (10.1016/j.agwat.2021.107246_bib2) 2001; 52
Nielsen (10.1016/j.agwat.2021.107246_bib61) 2018
Lv (10.1016/j.agwat.2021.107246_bib50) 2017; 7
Blanchy (10.1016/j.agwat.2021.107246_bib5) 2020; 19
Flower (10.1016/j.agwat.2021.107246_bib23) 2017; 208
Dakak (10.1016/j.agwat.2021.107246_bib16) 2017; 33
Frischknecht (10.1016/j.agwat.2021.107246_bib25) 1988; Volume 1
Allred (10.1016/j.agwat.2021.107246_bib4) 2005; 48
Corwin (10.1016/j.agwat.2021.107246_bib14) 2005; 46
Abdu (10.1016/j.agwat.2021.107246_bib1) 2017; 4
Reinhardt (10.1016/j.agwat.2021.107246_bib66) 2019; 182
Archie (10.1016/j.agwat.2021.107246_bib3) 1942; 146
Huang (10.1016/j.agwat.2021.107246_bib34) 2017; 33
10.1016/j.agwat.2021.107246_bib8
Brevik (10.1016/j.agwat.2021.107246_bib10) 2004; 5
McCutcheon (10.1016/j.agwat.2021.107246_bib53) 2006; 94
10.1016/j.agwat.2021.107246_bib7
10.1016/j.agwat.2021.107246_bib24
10.1016/j.agwat.2021.107246_bib69
Djaman (10.1016/j.agwat.2021.107246_bib18) 2012; 55
McKenzie (10.1016/j.agwat.2021.107246_bib55) 2000; 11
Delefortrie (10.1016/j.agwat.2021.107246_bib17) 2014; 100
McFarlane (10.1016/j.agwat.2021.107246_bib54) 2020; 103
Monteiro Santos (10.1016/j.agwat.2021.107246_bib59) 2004; 56
Pearson (10.1016/j.agwat.2021.107246_bib64) 2016; 2016
Isbell (10.1016/j.agwat.2021.107246_bib39) 2016
Lesch (10.1016/j.agwat.2021.107246_bib46) 2005; 46
Zhang (10.1016/j.agwat.2021.107246_bib82) 2015; 36
Minasny (10.1016/j.agwat.2021.107246_bib57) 2005
Flower (10.1016/j.agwat.2021.107246_bib22) 2012; 132
Yunusa (10.1016/j.agwat.2021.107246_bib80) 2004; 44
Sudduth (10.1016/j.agwat.2021.107246_bib73) 2003; 95
El-Naggar (10.1016/j.agwat.2021.107246_bib20) 2021; 22
Huntington (10.1016/j.agwat.2021.107246_bib37) 2010
Taylor (10.1016/j.agwat.2021.107246_bib74) 2003; 84
Bradford (10.1016/j.agwat.2021.107246_bib9) 2017; 7
10.1016/j.agwat.2021.107246_bib40
Lavoué (10.1016/j.agwat.2021.107246_bib44) 2010; 8
Von Hebel (10.1016/j.agwat.2021.107246_bib78) 2019; 19
Zhang (10.1016/j.agwat.2021.107246_bib83) 2019; 135
Grote (10.1016/j.agwat.2021.107246_bib29) 2010; 15
Zhao (10.1016/j.agwat.2021.107246_bib84) 2020; 200
Fabre (10.1016/j.agwat.2021.107246_bib21) 2015; 15
Gerssen-Gondelach (10.1016/j.agwat.2021.107246_bib28) 2015; 4
Hedley (10.1016/j.agwat.2021.107246_bib31) 2013; 199
Hossain (10.1016/j.agwat.2021.107246_bib33) 2010; 74
10.1016/j.agwat.2021.107246_bib36
Ward (10.1016/j.agwat.2021.107246_bib79) 2012; 132
References_xml – volume: 146
  start-page: 54
  year: 1942
  end-page: 62
  ident: bib3
  article-title: The Electrical Resistivity Log as an aid in determining some reservoir characteristics
  publication-title: Trans. AIME
– volume: 199
  start-page: 22
  year: 2013
  end-page: 29
  ident: bib31
  article-title: Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling
  publication-title: Geoderma
– volume: 7
  start-page: 6081
  year: 2017
  ident: bib50
  article-title: A model-based estimate of regional wheat yield gaps and water use efficiency in main winter wheat production regions of China
  publication-title: Sci. Rep.
– volume: 94
  start-page: 19
  year: 2006
  end-page: 32
  ident: bib53
  article-title: Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field
  publication-title: Biosyst. Eng.
– volume: 19
  start-page: 4753
  year: 2019
  ident: bib78
  article-title: Calibration, conversion, and quantitative multi-layer inversion of multi-coil rigid-boom electromagnetic induction data
  publication-title: Sensors
– ident: bib88
– reference: BOM, 2020. Climate statistics for Australian locations [WWW Document].
– volume: 4
  start-page: 135
  year: 2017
  end-page: 145
  ident: bib1
  article-title: Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns and gravel lenses
  publication-title: Front. Agric. Sci. Eng.
– volume: 46
  start-page: 11
  year: 2005
  end-page: 43
  ident: bib14
  article-title: Apparent soil electrical conductivity measurements in agriculture
  publication-title: Comput. Electron. Agric.
– volume: Volume 1
  start-page: 364
  year: 1988
  end-page: 441
  ident: bib25
  article-title: Electromagnetic Physical Scale Modeling
  publication-title: Electromagnetic Methods in Applied Geophysics: Theory, Investigations in Geophysics
– volume: 33
  start-page: 205
  year: 2017
  end-page: 215
  ident: bib34
  article-title: Characterization of field-scale dryland salinity with depth by quasi-3d inversion of DUALEM-1 data
  publication-title: Soil Use Manag.
– volume: 12
  start-page: 55
  year: 2011
  end-page: 66
  ident: bib51
  article-title: Comparing temperature correction models for soil electrical conductivity measurement
  publication-title: Precis. Agric.
– volume: 54
  start-page: 254
  year: 1989
  end-page: 262
  ident: bib71
  article-title: Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data
  publication-title: Geophysics
– volume: 84
  start-page: 441
  year: 2003
  end-page: 453
  ident: bib74
  article-title: Soil factors and their influence on within-field crop variability, part Ii: spatial analysis and determination of management zones
  publication-title: Biosyst. Eng.
– volume: 132
  start-page: 63
  year: 2012
  end-page: 75
  ident: bib22
  article-title: Nitrogen, weed management and economics with cover crops in conservation agriculture in a Mediterranean climate
  publication-title: F. Crop. Res.
– volume: 4
  start-page: 36
  year: 2015
  end-page: 75
  ident: bib28
  article-title: Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials
  publication-title: Food Energy Secur.
– volume: 593
  year: 2021
  ident: bib45
  article-title: Time lapse electric resistivity tomography to portray infiltration and hydrologic flow paths from surface to cave
  publication-title: J. Hydrol.
– volume: 95
  start-page: 91
  year: 2012
  end-page: 103
  ident: bib30
  article-title: Multi-scale temporal stability analysis of surface and subsurface soil moisture within the Upper Cedar Creek Watershed, Indiana
  publication-title: CATENA
– volume: 200
  year: 2020
  ident: bib84
  article-title: Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data
  publication-title: Soil Tillage Res.
– volume: 135
  start-page: 304
  year: 2019
  end-page: 315
  ident: bib83
  article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization
  publication-title: Soil Biol. Biochem.
– start-page: 1
  year: 2010
  end-page: 53
  ident: bib37
  article-title: Chapter one – climate warming-induced intensification of the hydrologic cycle: an assessment of the published record and potential impacts on agriculture
– reference: IUSS WRB, 2014. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome.
– reference: Rallos, R. V., Gultiano, W.A., Vidal, J.F., 2013. Agronomic applicability of non-destructive soil moisture-density measurements using gamma-neutron probe. In: Proceedings of the Annual Meeting and Scientific Conference. Philippines, pp. 83–84.
– volume: 86
  start-page: 421
  year: 2003
  end-page: 430
  ident: bib41
  article-title: Determination of soil type boundaries using electromagnetic induction scanning techniques
  publication-title: Biosyst. Eng.
– volume: 4
  start-page: 25
  year: 2020
  ident: bib81
  article-title: Identifying potential leakage zones in an irrigation supply channel by mapping soil properties using electromagnetic induction, inversion modelling and a support vector machine
  publication-title: Soil Syst.
– volume: 10
  start-page: 412
  year: 2011
  end-page: 424
  ident: bib27
  article-title: Three-dimensional electrical resistivity tomography to monitor root zone water dynamics
  publication-title: Vadose Zone J.
– volume: 50
  start-page: 2732
  year: 2014
  end-page: 2748
  ident: bib76
  article-title: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data
  publication-title: Water Resour. Res.
– volume: 13
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib52
  article-title: Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique
  publication-title: J. Appl. Remote Sens.
– start-page: 462
  year: 2005
  end-page: 471
  ident: bib77
  article-title: Sand dunes
– volume: 19
  year: 2020
  ident: bib6
  article-title: Time‐lapse geophysical assessment of agricultural practices on soil moisture dynamics
  publication-title: Vadose Zone J.
– volume: 314
  start-page: 160
  year: 2018
  end-page: 174
  ident: bib68
  article-title: Spatial variability of soil water content and soil electrical conductivity across scales derived from Electromagnetic Induction and Time Domain Reflectometry
  publication-title: Geoderma
– ident: bib87
– volume: 12
  year: 2013
  ident: bib26
  article-title: Noninvasive monitoring of soil water dynamics in mixed cropping systems: a case study in Ratchaburi Province, Thailand
  publication-title: Vadose Zone J.
– volume: 239–240
  start-page: 115
  year: 2015
  end-page: 129
  ident: bib72
  article-title: Landscape-scale exploratory radiometric mapping using proximal soil sensing
  publication-title: Geoderma
– volume: 56
  start-page: 123
  year: 2004
  end-page: 134
  ident: bib59
  article-title: 1-D laterally constrained inversion of EM34 profiling data
  publication-title: J. Appl. Geophys.
– volume: 52
  start-page: 183
  year: 2001
  end-page: 192
  ident: bib2
  article-title: Soil water extraction by dryland crops, annual pastures, and lucerne in south-eastern Australia
  publication-title: Crop Pasture Sci.
– volume: 74
  start-page: 100
  year: 2010
  end-page: 109
  ident: bib33
  article-title: EM38 for volumetric soil water content estimation in the root-zone of deep vertosol soils
  publication-title: Comput. Electron. Agric.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 18
  ident: bib64
  article-title: Generalized hampel filters
  publication-title: EURASIP J. Adv. Signal Process.
– reference: Lewinson, E., 2019. outlier_detection_hampel_filter.ipynb [WWW Document].
– volume: 182
  start-page: 9
  year: 2019
  end-page: 27
  ident: bib66
  article-title: Gamma-ray spectrometry as versatile tool in soil science: a critical review
  publication-title: J. Plant Nutr. Soil Sci.
– reference: Hübner, C., Kaatze, U., 2016. Electromagnetic Moisture Measurement.
– volume: 223–225
  start-page: 33
  year: 2014
  end-page: 45
  ident: bib19
  article-title: The use of electromagnetic induction techniques in soils studies
  publication-title: Geoderma
– volume: 163
  start-page: 285
  year: 2016
  end-page: 294
  ident: bib35
  article-title: Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging
  publication-title: Agric. Water Manag.
– volume: 18
  start-page: 267
  year: 2003
  end-page: 288
  ident: bib42
  article-title: An overview of APSIM, a model designed for farming systems simulation
  publication-title: Eur. J. Agron.
– reference: BOM-CSIRO, 2016. Australia’s changing climate [WWW Document].
– volume: 3
  start-page: 52
  year: 2012
  end-page: 58
  ident: bib15
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nat. Clim. Change
– volume: 110
  start-page: 238
  year: 2017
  end-page: 248
  ident: bib58
  article-title: Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data
  publication-title: Adv. Water Resour.
– volume: 4
  start-page: 36
  year: 2011
  end-page: 48
  ident: bib85
  article-title: Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics
  publication-title: Ecohydrology
– volume: 8
  start-page: 553
  year: 2010
  end-page: 561
  ident: bib44
  article-title: Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography
  publication-title: Surf. Geophys.
– volume: 19
  year: 2020
  ident: bib5
  article-title: Accounting for heterogeneity in the θ–σ relationship: application to wheat phenotyping using EMI
  publication-title: Vadose Zone J.
– volume: 22
  start-page: 1045
  year: 2021
  end-page: 1066
  ident: bib20
  article-title: Imaging the electrical conductivity of the soil profile and its relationships to soil water patterns and drainage characteristics
  publication-title: Precis. Agric.
– volume: 44
  start-page: 787
  year: 2004
  end-page: 800
  ident: bib80
  article-title: An exploratory evaluation of APSIM to simulate growth and yield processes for winter cereals in rotation systems in South Australia
  publication-title: Aust. J. Exp. Agric.
– reference: Flower, K.C., Ward, P.R., Micin, S.F., Coringley, N., 2021. Patterns of crop water use in a long-term rotation trial – GRDC updates [WWW Document].
– volume: 33
  start-page: 553
  year: 2017
  end-page: 567
  ident: bib16
  article-title: Mapping soil salinity in 3-dimensions using an EM38 and EM4Soil inversion modelling at the reconnaissance scale in central Morocco
  publication-title: Soil Use Manag.
– ident: bib86
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib49
  article-title: Rapid inversion of data from 2-D and from 3-D resistivity surveys with shifted electrodes
  publication-title: Near Surface Geoscience 2015 – 21st European Meeting of Environmental and Engineering Geophysics
– volume: 40
  start-page: 651
  year: 1976
  end-page: 655
  ident: bib67
  article-title: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 95
  start-page: 472
  year: 2003
  end-page: 482
  ident: bib73
  article-title: Comparison of electromagnetic induction and direct sensing of soil electrical conductivity
  publication-title: Agron. J.
– volume: 36
  start-page: 5015
  year: 2015
  end-page: 5030
  ident: bib82
  article-title: Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions
  publication-title: Int. J. Remote Sens.
– volume: 228
  start-page: 20
  year: 2018
  end-page: 30
  ident: bib32
  article-title: Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia
  publication-title: F. Crop. Res.
– reference: Russell, J.J., 1996. Chemical fallowinga and manipulation of pasture along with early seeding give greater yields and water use of wheat on a sandy clay loam soil. In: Proceedings of 8th Agronomy Conference, The Regional Institute Online Publishing.
– volume: 15
  start-page: 93
  year: 2010
  end-page: 110
  ident: bib29
  article-title: Characterization of soil water content variability and soil texture using GPR groundwave techniques
  publication-title: J. Environ. Eng. Geophys.
– volume: 5
  start-page: 145
  year: 2004
  end-page: 152
  ident: bib10
  article-title: Effect of Daily Soil Temperature Fluctuations on Soil Electrical Conductivity as Measured with the Geonics® EM-38
  publication-title: Precis. Agric.
– volume: 103
  start-page: 9
  year: 2020
  end-page: 27
  ident: bib54
  article-title: Runoff and groundwater responses to climate change in South West Australia
  publication-title: J. R. Soc. West. Aust.
– start-page: 12
  year: 2013
  ident: bib75
  article-title: Inferring the location of preferential flow paths of a leachate plume by using a DUALEM-421 and a quasi-three-dimensional inversion model
  publication-title: Vadose Zone J.
– volume: 208
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib23
  article-title: Rainfall, rotations and residue level affect no-tillage wheat yield and gross margin in a Mediterranean-type environment
  publication-title: F. Crop. Res.
– volume: 46
  start-page: 153
  year: 2005
  end-page: 179
  ident: bib46
  article-title: Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties
  publication-title: Comput. Electron. Agric.
– year: 2016
  ident: bib39
  article-title: The Australian Soil Classification
– start-page: 110
  year: 2018
  ident: bib61
  article-title: Soil water extraction for several dryland crops
  publication-title: Agron. J.
– volume: 100
  start-page: 14
  year: 2014
  end-page: 22
  ident: bib17
  article-title: Frequency domain electromagnetic induction survey in the intertidal zone: limitations of low-induction-number and depth of exploration
  publication-title: J. Appl. Geophys.
– volume: 46
  start-page: 45
  year: 2001
  end-page: 54
  ident: bib70
  article-title: Full 3-D inversion of electromagnetic data on PC
  publication-title: J. Appl. Geophys.
– volume: 335
  start-page: 133
  year: 2019
  end-page: 148
  ident: bib11
  article-title: Large-scale soil mapping using multi-configuration EMI and supervised image classification
  publication-title: Geoderma
– volume: 15
  start-page: 3262
  year: 2015
  end-page: 3281
  ident: bib21
  article-title: Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain
  publication-title: Sensors
– volume: 4
  start-page: 46
  year: 2015
  end-page: 50
  ident: bib38
  article-title: How do weather and climate influence cropping area and intensity
  publication-title: Glob. Food Sect.
– volume: 7
  start-page: 12923
  year: 2017
  ident: bib9
  article-title: Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands
  publication-title: Sci. Rep.
– reference: McNeill, J.D., 1980. Electromagnetic terrain conductivity measurement at low induction numbers. TN-6. Geonics Limited Mississauga, ON, Canada.
– year: 2005
  ident: bib57
  article-title: VESPER version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05
– volume: 11
  start-page: 1
  year: 2000
  end-page: 12
  ident: bib55
  article-title: Estimation of Soil Properties Using the Atlas of Australian Soils. CSIRO L
  publication-title: Water Tech. Rep.
– reference: .
– volume: 18
  start-page: 1
  year: 2013
  end-page: 25
  ident: bib13
  article-title: Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling
  publication-title: J. Environ. Eng. Geophys.
– volume: 132
  start-page: 33
  year: 2012
  end-page: 39
  ident: bib79
  article-title: Soil water balance with cover crops and conservation agriculture in a Mediterranean climate
  publication-title: F. Crop. Res.
– volume: 48
  start-page: 2123
  year: 2005
  end-page: 2135
  ident: bib4
  article-title: The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity
  publication-title: Trans. ASAE
– volume: 43
  start-page: 2607
  year: 2014
  end-page: 2627
  ident: bib12
  article-title: Global warming and 21st century drying
  publication-title: Clim. Dyn.
– reference: Loke, M., 2001. Tutorial: 2-D and 3-D Electrical Imaging Surveys [WWW Document].
– volume: 55
  start-page: 1223
  year: 2012
  end-page: 1238
  ident: bib18
  article-title: Soil water extraction patterns and crop, irrigation, and evapotranspiration water use efficiency of maize under full and limited irrigation and rainfed settings
  publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.)
– reference: Moura, R., Pereira, T., Barros, M.T., Alipio, R., Lima, A.C.S., Schroeder, M.A., 2018. Analysis of frequency-dependence of soil resisitivity: emphasis at low frequencies. In: Conference: International Conference on Grounding, Lightning Physics and Effects (GROUND’ 18).
– volume: 52
  start-page: 209
  year: 1997
  end-page: 219
  ident: bib62
  article-title: Stubble retention and tillage in a semi-arid environment: 1. Soil water accumulation during fallow
  publication-title: F. Crop. Res.
– volume: 49
  start-page: 504
  year: 2011
  end-page: 512
  ident: bib43
  article-title: Better placement of soil moisture point measurements guided by 2D resistivity tomography for improved irrigation scheduling
  publication-title: Soil Res.
– volume: 194
  year: 2019
  ident: bib63
  article-title: Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period
  publication-title: Soil Tillage Res.
– ident: 10.1016/j.agwat.2021.107246_bib47
– volume: 52
  start-page: 209
  year: 1997
  ident: 10.1016/j.agwat.2021.107246_bib62
  article-title: Stubble retention and tillage in a semi-arid environment: 1. Soil water accumulation during fallow
  publication-title: F. Crop. Res.
  doi: 10.1016/S0378-4290(97)00034-8
– volume: 314
  start-page: 160
  year: 2018
  ident: 10.1016/j.agwat.2021.107246_bib68
  article-title: Spatial variability of soil water content and soil electrical conductivity across scales derived from Electromagnetic Induction and Time Domain Reflectometry
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.045
– ident: 10.1016/j.agwat.2021.107246_bib24
– volume: 84
  start-page: 441
  year: 2003
  ident: 10.1016/j.agwat.2021.107246_bib74
  article-title: Soil factors and their influence on within-field crop variability, part Ii: spatial analysis and determination of management zones
  publication-title: Biosyst. Eng.
  doi: 10.1016/S1537-5110(03)00005-9
– start-page: 110
  year: 2018
  ident: 10.1016/j.agwat.2021.107246_bib61
  article-title: Soil water extraction for several dryland crops
  publication-title: Agron. J.
– volume: 54
  start-page: 254
  year: 1989
  ident: 10.1016/j.agwat.2021.107246_bib71
  article-title: Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data
  publication-title: Geophysics
  doi: 10.1190/1.1442649
– volume: 19
  start-page: 4753
  year: 2019
  ident: 10.1016/j.agwat.2021.107246_bib78
  article-title: Calibration, conversion, and quantitative multi-layer inversion of multi-coil rigid-boom electromagnetic induction data
  publication-title: Sensors
  doi: 10.3390/s19214753
– volume: 46
  start-page: 11
  year: 2005
  ident: 10.1016/j.agwat.2021.107246_bib14
  article-title: Apparent soil electrical conductivity measurements in agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2004.10.005
– volume: 163
  start-page: 285
  year: 2016
  ident: 10.1016/j.agwat.2021.107246_bib35
  article-title: Mapping soil moisture across an irrigated field using electromagnetic conductivity imaging
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.09.003
– volume: 18
  start-page: 267
  year: 2003
  ident: 10.1016/j.agwat.2021.107246_bib42
  article-title: An overview of APSIM, a model designed for farming systems simulation
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00108-9
– volume: 135
  start-page: 304
  year: 2019
  ident: 10.1016/j.agwat.2021.107246_bib83
  article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.05.019
– volume: 33
  start-page: 553
  year: 2017
  ident: 10.1016/j.agwat.2021.107246_bib16
  article-title: Mapping soil salinity in 3-dimensions using an EM38 and EM4Soil inversion modelling at the reconnaissance scale in central Morocco
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12370
– volume: 593
  year: 2021
  ident: 10.1016/j.agwat.2021.107246_bib45
  article-title: Time lapse electric resistivity tomography to portray infiltration and hydrologic flow paths from surface to cave
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125810
– ident: 10.1016/j.agwat.2021.107246_bib56
– volume: 146
  start-page: 54
  year: 1942
  ident: 10.1016/j.agwat.2021.107246_bib3
  article-title: The Electrical Resistivity Log as an aid in determining some reservoir characteristics
  publication-title: Trans. AIME
  doi: 10.2118/942054-G
– volume: 48
  start-page: 2123
  year: 2005
  ident: 10.1016/j.agwat.2021.107246_bib4
  article-title: The impact of temperature and shallow hydrologic conditions on the magnitude and spatial pattern consistency of electromagnetic induction measured soil electrical conductivity
  publication-title: Trans. ASAE
  doi: 10.13031/2013.20098
– volume: 7
  start-page: 6081
  year: 2017
  ident: 10.1016/j.agwat.2021.107246_bib50
  article-title: A model-based estimate of regional wheat yield gaps and water use efficiency in main winter wheat production regions of China
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06312-x
– volume: 52
  start-page: 183
  year: 2001
  ident: 10.1016/j.agwat.2021.107246_bib2
  article-title: Soil water extraction by dryland crops, annual pastures, and lucerne in south-eastern Australia
  publication-title: Crop Pasture Sci.
  doi: 10.1071/AR00103
– ident: 10.1016/j.agwat.2021.107246_bib69
– volume: 10
  start-page: 412
  year: 2011
  ident: 10.1016/j.agwat.2021.107246_bib27
  article-title: Three-dimensional electrical resistivity tomography to monitor root zone water dynamics
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2010.0079
– volume: 86
  start-page: 421
  year: 2003
  ident: 10.1016/j.agwat.2021.107246_bib41
  article-title: Determination of soil type boundaries using electromagnetic induction scanning techniques
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2003.09.001
– volume: 55
  start-page: 1223
  year: 2012
  ident: 10.1016/j.agwat.2021.107246_bib18
  article-title: Soil water extraction patterns and crop, irrigation, and evapotranspiration water use efficiency of maize under full and limited irrigation and rainfed settings
  publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.)
– volume: 228
  start-page: 20
  year: 2018
  ident: 10.1016/j.agwat.2021.107246_bib32
  article-title: Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia
  publication-title: F. Crop. Res.
  doi: 10.1016/j.fcr.2018.08.023
– ident: 10.1016/j.agwat.2021.107246_bib40
– volume: 194
  year: 2019
  ident: 10.1016/j.agwat.2021.107246_bib63
  article-title: Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: Impact on productivity and profitability over a 50 year period
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104319
– ident: 10.1016/j.agwat.2021.107246_bib8
– ident: 10.1016/j.agwat.2021.107246_bib36
  doi: 10.17875/gup2016-958
– volume: 11
  start-page: 1
  year: 2000
  ident: 10.1016/j.agwat.2021.107246_bib55
  article-title: Estimation of Soil Properties Using the Atlas of Australian Soils. CSIRO L
  publication-title: Water Tech. Rep.
– volume: 4
  start-page: 36
  year: 2011
  ident: 10.1016/j.agwat.2021.107246_bib85
  article-title: Factors controlling the spatial patterns of soil moisture in a grazed semi-arid steppe investigated by multivariate geostatistics
  publication-title: Ecohydrology
  doi: 10.1002/eco.121
– volume: Volume 1
  start-page: 364
  year: 1988
  ident: 10.1016/j.agwat.2021.107246_bib25
  article-title: Electromagnetic Physical Scale Modeling
– volume: 56
  start-page: 123
  year: 2004
  ident: 10.1016/j.agwat.2021.107246_bib59
  article-title: 1-D laterally constrained inversion of EM34 profiling data
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2004.04.005
– ident: 10.1016/j.agwat.2021.107246_bib65
– ident: 10.1016/j.agwat.2021.107246_bib48
  doi: 10.1071/ASEG2001ab075
– volume: 50
  start-page: 2732
  year: 2014
  ident: 10.1016/j.agwat.2021.107246_bib76
  article-title: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014864
– volume: 15
  start-page: 3262
  year: 2015
  ident: 10.1016/j.agwat.2021.107246_bib21
  article-title: Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain
  publication-title: Sensors
  doi: 10.3390/s150203262
– volume: 46
  start-page: 153
  year: 2005
  ident: 10.1016/j.agwat.2021.107246_bib46
  article-title: Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2004.11.004
– year: 2005
  ident: 10.1016/j.agwat.2021.107246_bib57
– volume: 110
  start-page: 238
  year: 2017
  ident: 10.1016/j.agwat.2021.107246_bib58
  article-title: Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.10.019
– volume: 132
  start-page: 33
  year: 2012
  ident: 10.1016/j.agwat.2021.107246_bib79
  article-title: Soil water balance with cover crops and conservation agriculture in a Mediterranean climate
  publication-title: F. Crop. Res.
  doi: 10.1016/j.fcr.2011.10.017
– volume: 74
  start-page: 100
  year: 2010
  ident: 10.1016/j.agwat.2021.107246_bib33
  article-title: EM38 for volumetric soil water content estimation in the root-zone of deep vertosol soils
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.07.003
– volume: 44
  start-page: 787
  year: 2004
  ident: 10.1016/j.agwat.2021.107246_bib80
  article-title: An exploratory evaluation of APSIM to simulate growth and yield processes for winter cereals in rotation systems in South Australia
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA03121
– volume: 18
  start-page: 1
  year: 2013
  ident: 10.1016/j.agwat.2021.107246_bib13
  article-title: Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.2113/JEEG18.1.1
– volume: 12
  year: 2013
  ident: 10.1016/j.agwat.2021.107246_bib26
  article-title: Noninvasive monitoring of soil water dynamics in mixed cropping systems: a case study in Ratchaburi Province, Thailand
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2012.0129
– volume: 95
  start-page: 472
  year: 2003
  ident: 10.1016/j.agwat.2021.107246_bib73
  article-title: Comparison of electromagnetic induction and direct sensing of soil electrical conductivity
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.4720
– volume: 95
  start-page: 91
  year: 2012
  ident: 10.1016/j.agwat.2021.107246_bib30
  article-title: Multi-scale temporal stability analysis of surface and subsurface soil moisture within the Upper Cedar Creek Watershed, Indiana
  publication-title: CATENA
  doi: 10.1016/j.catena.2012.03.008
– start-page: 1
  year: 2015
  ident: 10.1016/j.agwat.2021.107246_bib49
  article-title: Rapid inversion of data from 2-D and from 3-D resistivity surveys with shifted electrodes
– volume: 199
  start-page: 22
  year: 2013
  ident: 10.1016/j.agwat.2021.107246_bib31
  article-title: Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.07.018
– volume: 19
  year: 2020
  ident: 10.1016/j.agwat.2021.107246_bib6
  article-title: Time‐lapse geophysical assessment of agricultural practices on soil moisture dynamics
  publication-title: Vadose Zone J.
  doi: 10.1002/vzj2.20080
– volume: 4
  start-page: 135
  year: 2017
  ident: 10.1016/j.agwat.2021.107246_bib1
  article-title: Electromagnetic induction mapping at varied soil moisture reveals field-scale soil textural patterns and gravel lenses
  publication-title: Front. Agric. Sci. Eng.
  doi: 10.15302/J-FASE-2017143
– volume: 19
  year: 2020
  ident: 10.1016/j.agwat.2021.107246_bib5
  article-title: Accounting for heterogeneity in the θ–σ relationship: application to wheat phenotyping using EMI
  publication-title: Vadose Zone J.
  doi: 10.1002/vzj2.20037
– year: 2016
  ident: 10.1016/j.agwat.2021.107246_bib39
– volume: 103
  start-page: 9
  year: 2020
  ident: 10.1016/j.agwat.2021.107246_bib54
  article-title: Runoff and groundwater responses to climate change in South West Australia
  publication-title: J. R. Soc. West. Aust.
– start-page: 1
  year: 2010
  ident: 10.1016/j.agwat.2021.107246_bib37
  article-title: Chapter one – climate warming-induced intensification of the hydrologic cycle: an assessment of the published record and potential impacts on agriculture
– ident: 10.1016/j.agwat.2021.107246_bib60
– volume: 182
  start-page: 9
  year: 2019
  ident: 10.1016/j.agwat.2021.107246_bib66
  article-title: Gamma-ray spectrometry as versatile tool in soil science: a critical review
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201700447
– ident: 10.1016/j.agwat.2021.107246_bib7
– volume: 49
  start-page: 504
  year: 2011
  ident: 10.1016/j.agwat.2021.107246_bib43
  article-title: Better placement of soil moisture point measurements guided by 2D resistivity tomography for improved irrigation scheduling
  publication-title: Soil Res.
  doi: 10.1071/SR11145
– volume: 36
  start-page: 5015
  year: 2015
  ident: 10.1016/j.agwat.2021.107246_bib82
  article-title: Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1055610
– volume: 15
  start-page: 93
  year: 2010
  ident: 10.1016/j.agwat.2021.107246_bib29
  article-title: Characterization of soil water content variability and soil texture using GPR groundwave techniques
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.2113/JEEG15.3.93
– volume: 22
  start-page: 1045
  year: 2021
  ident: 10.1016/j.agwat.2021.107246_bib20
  article-title: Imaging the electrical conductivity of the soil profile and its relationships to soil water patterns and drainage characteristics
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-020-09763-x
– volume: 132
  start-page: 63
  year: 2012
  ident: 10.1016/j.agwat.2021.107246_bib22
  article-title: Nitrogen, weed management and economics with cover crops in conservation agriculture in a Mediterranean climate
  publication-title: F. Crop. Res.
  doi: 10.1016/j.fcr.2011.09.011
– volume: 239–240
  start-page: 115
  year: 2015
  ident: 10.1016/j.agwat.2021.107246_bib72
  article-title: Landscape-scale exploratory radiometric mapping using proximal soil sensing
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.10.005
– volume: 4
  start-page: 25
  year: 2020
  ident: 10.1016/j.agwat.2021.107246_bib81
  article-title: Identifying potential leakage zones in an irrigation supply channel by mapping soil properties using electromagnetic induction, inversion modelling and a support vector machine
  publication-title: Soil Syst.
  doi: 10.3390/soilsystems4020025
– volume: 40
  start-page: 651
  year: 1976
  ident: 10.1016/j.agwat.2021.107246_bib67
  article-title: Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1976.03615995004000050017x
– volume: 4
  start-page: 36
  year: 2015
  ident: 10.1016/j.agwat.2021.107246_bib28
  article-title: Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.53
– volume: 4
  start-page: 46
  year: 2015
  ident: 10.1016/j.agwat.2021.107246_bib38
  article-title: How do weather and climate influence cropping area and intensity
  publication-title: Glob. Food Sect.
  doi: 10.1016/j.gfs.2014.11.003
– volume: 33
  start-page: 205
  year: 2017
  ident: 10.1016/j.agwat.2021.107246_bib34
  article-title: Characterization of field-scale dryland salinity with depth by quasi-3d inversion of DUALEM-1 data
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12345
– volume: 200
  year: 2020
  ident: 10.1016/j.agwat.2021.107246_bib84
  article-title: Mapping cation exchange capacity using a quasi-3d joint inversion of EM38 and EM31 data
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2020.104618
– volume: 3
  start-page: 52
  year: 2012
  ident: 10.1016/j.agwat.2021.107246_bib15
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1633
– volume: 13
  start-page: 1
  year: 2019
  ident: 10.1016/j.agwat.2021.107246_bib52
  article-title: Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.13.024519
– volume: 5
  start-page: 145
  year: 2004
  ident: 10.1016/j.agwat.2021.107246_bib10
  article-title: Effect of Daily Soil Temperature Fluctuations on Soil Electrical Conductivity as Measured with the Geonics® EM-38
  publication-title: Precis. Agric.
  doi: 10.1023/B:PRAG.0000022359.79184.92
– volume: 46
  start-page: 45
  year: 2001
  ident: 10.1016/j.agwat.2021.107246_bib70
  article-title: Full 3-D inversion of electromagnetic data on PC
  publication-title: J. Appl. Geophys.
  doi: 10.1016/S0926-9851(00)00038-0
– volume: 335
  start-page: 133
  year: 2019
  ident: 10.1016/j.agwat.2021.107246_bib11
  article-title: Large-scale soil mapping using multi-configuration EMI and supervised image classification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.001
– start-page: 12
  year: 2013
  ident: 10.1016/j.agwat.2021.107246_bib75
  article-title: Inferring the location of preferential flow paths of a leachate plume by using a DUALEM-421 and a quasi-three-dimensional inversion model
  publication-title: Vadose Zone J.
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.agwat.2021.107246_bib64
  article-title: Generalized hampel filters
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-016-0383-6
– volume: 7
  start-page: 12923
  year: 2017
  ident: 10.1016/j.agwat.2021.107246_bib9
  article-title: Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13165-x
– volume: 208
  start-page: 1
  year: 2017
  ident: 10.1016/j.agwat.2021.107246_bib23
  article-title: Rainfall, rotations and residue level affect no-tillage wheat yield and gross margin in a Mediterranean-type environment
  publication-title: F. Crop. Res.
  doi: 10.1016/j.fcr.2017.03.012
– volume: 12
  start-page: 55
  year: 2011
  ident: 10.1016/j.agwat.2021.107246_bib51
  article-title: Comparing temperature correction models for soil electrical conductivity measurement
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-009-9156-7
– volume: 43
  start-page: 2607
  year: 2014
  ident: 10.1016/j.agwat.2021.107246_bib12
  article-title: Global warming and 21st century drying
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-014-2075-y
– volume: 100
  start-page: 14
  year: 2014
  ident: 10.1016/j.agwat.2021.107246_bib17
  article-title: Frequency domain electromagnetic induction survey in the intertidal zone: limitations of low-induction-number and depth of exploration
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2013.10.005
– volume: 8
  start-page: 553
  year: 2010
  ident: 10.1016/j.agwat.2021.107246_bib44
  article-title: Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography
  publication-title: Surf. Geophys.
  doi: 10.3997/1873-0604.2010037
– volume: 94
  start-page: 19
  year: 2006
  ident: 10.1016/j.agwat.2021.107246_bib53
  article-title: Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2006.01.002
– start-page: 462
  year: 2005
  ident: 10.1016/j.agwat.2021.107246_bib77
  article-title: Sand dunes
– volume: 223–225
  start-page: 33
  year: 2014
  ident: 10.1016/j.agwat.2021.107246_bib19
  article-title: The use of electromagnetic induction techniques in soils studies
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.01.027
SSID ssj0004047
Score 2.3915038
Snippet Knowledge of real time spatial distribution of soil moisture has great potential to improve yield and profit in agricultural systems. Recent advances in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107246
SubjectTerms algorithms
Crop rotation
dry season
electrical conductivity
Electrical resistivity tomography
EM inversion
laboratory experimentation
neutrons
prediction
soil depth
soil profiles
Soil volumetric water content
soil water
volumetric water content
water management
wet season
Title Quasi-3D mapping of soil moisture in agricultural fields using electrical conductivity sensing
URI https://dx.doi.org/10.1016/j.agwat.2021.107246
https://www.proquest.com/docview/2636811594
Volume 259
WOSCitedRecordID wos000711635400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2283
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004047
  issn: 0378-3774
  databaseCode: AIEXJ
  dateStart: 19950401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wAHxKcYXzISt5CqtZPYPk5jaHCYQAypJyLHsUfGmlRNA_vzef5I062iYgcuURUllpXfr8_vPT-_H0JviRYavCETTxRXcWLsJiGsPLFRJZ0oyoqElE5sgp2c8NlMfA6lQ62TE2B1zS8vxeK_Qg33AGx7dPYGcK8HhRvwG0CHK8AO138C_ksn2yqm76O5XCxCTXPbVBfRvAFI7X5BVUfybDk03XBVbG3UubSB18UJfUNq2w3Wy0u0ttI9LHN919rNQX5L225xvlVN8_WH7H5KZ-qPq6Uc-GLl2cLJoOhwPBQGWdUGr3RspcgreSUxQchGYiIcyLKVF8yL8PTGloT-395cQuxJfAZyy5L7pML5WJ7B_CGOJ9Px8PTVvtnX1rN1lWFfwHaeu0FyO0juB7mN9ghLBR-hvYOPR7NPw1HaidOkW8-9b1TlSgK35vI3Z-basu58ldMH6H4IMvCBJ8dDdEvXj9C9AS79GH3vaYIDTXBjsKUJ7mmCqxpv0gR7mmBHEzzQBG_SBAeaPEHfPhydHh7HQWsjVpRmq5hoTZQmXAuTqqKcCDOVgomSgIvIuGFa0aJgKSsNTcuiLDNClIHPooqCTngp6VM0qptaP0OYCnDbicog9oRwYJrIVEFUkhieJIU2PN1HpP9ouQqN6K0eykW-A7B99G790sL3Ydn9eNajkQdX0ruIOfBr94tveuxyMLR290zWuunanGQ04xA_ieT5zebyAt0d_h4v0Wi17PQrdEf9WlXt8nUg4B8kyqUj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-3D+mapping+of+soil+moisture+in+agricultural+fields+using+electrical+conductivity+sensing&rft.jtitle=Agricultural+water+management&rft.au=Shaukat%2C+Hira&rft.au=Flower%2C+Ken+C.&rft.au=Leopold%2C+Matthias&rft.date=2022-01-01&rft.issn=0378-3774&rft.volume=259&rft.spage=107246&rft_id=info:doi/10.1016%2Fj.agwat.2021.107246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_agwat_2021_107246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon