A non-overlapping domain decomposition method for parabolic initial-boundary value problems

A non-overlapping domain decomposition method with adaptive interface conditions is applied to parabolic initial-boundary value problems in the full range from diffusion- to advection-dominated problems. The basic discretizations are the discontinuous Galerkin method in time and a stabilized Galerki...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied numerical mathematics Ročník 28; číslo 2; s. 359 - 369
Hlavní autori: Lube, G., Otto, F.C., Müller, H.
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.10.1998
Elsevier
Predmet:
ISSN:0168-9274, 1873-5460
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A non-overlapping domain decomposition method with adaptive interface conditions is applied to parabolic initial-boundary value problems in the full range from diffusion- to advection-dominated problems. The basic discretizations are the discontinuous Galerkin method in time and a stabilized Galerkin method in space. A convergence proof is available in appropriate Sobolev norms for the continuous elliptic problems arising in each time step. The numerical convergence rate is independent of the mesh size. Finally we extend the approach to more complex problems.
ISSN:0168-9274
1873-5460
DOI:10.1016/S0168-9274(98)00053-1