A survey of collaborative filtering based social recommender systems

Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest to a user items that might be of interest to her. Recent studies demonstrate that information from social networks can be exploited to improve accuracy of recommendations. In this paper,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer communications Ročník 41; s. 1 - 10
Hlavní autoři: Yang, Xiwang, Guo, Yang, Liu, Yong, Steck, Harald
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 15.03.2014
Elsevier
Témata:
ISSN:0140-3664, 1873-703X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest to a user items that might be of interest to her. Recent studies demonstrate that information from social networks can be exploited to improve accuracy of recommendations. In this paper, we present a survey of collaborative filtering (CF) based social recommender systems. We provide a brief overview over the task of recommender systems and traditional approaches that do not use social network information. We then present how social network information can be adopted by recommender systems as additional input for improved accuracy. We classify CF-based social recommender systems into two categories: matrix factorization based social recommendation approaches and neighborhood based social recommendation approaches. For each category, we survey and compare several representative algorithms.
AbstractList Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest to a user items that might be of interest to her. Recent studies demonstrate that information from social networks can be exploited to improve accuracy of recommendations. In this paper, we present a survey of collaborative filtering (CF) based social recommender systems. We provide a brief overview over the task of recommender systems and traditional approaches that do not use social network information. We then present how social network information can be adopted by recommender systems as additional input for improved accuracy. We classify CF-based social recommender systems into two categories: matrix factorization based social recommendation approaches and neighborhood based social recommendation approaches. For each category, we survey and compare several representative algorithms.
Author Steck, Harald
Guo, Yang
Liu, Yong
Yang, Xiwang
Author_xml – sequence: 1
  givenname: Xiwang
  surname: Yang
  fullname: Yang, Xiwang
  email: xy271@nyu.edu
  organization: Polytechnic Institute of NYU, Brooklyn, NY, USA
– sequence: 2
  givenname: Yang
  surname: Guo
  fullname: Guo, Yang
  email: Yang.Guo@alcatel-lucent.com
  organization: Bell Labs, Alcatel-Lucent, Holmdel, NJ, USA
– sequence: 3
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
  email: yongliu@poly.edu
  organization: Polytechnic Institute of NYU, Brooklyn, NY, USA
– sequence: 4
  givenname: Harald
  surname: Steck
  fullname: Steck, Harald
  email: hsteck@netflix.com
  organization: Netflix Inc., Los Gatos, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28282340$$DView record in Pascal Francis
BookMark eNqFkE1Lw0AQhhepYKv-Aw-5eEycZNdN4kEo9RMKXhS8LdPJrGxJs7IbC_33rlQ8eFBmYA7zPjPwzMRk8AMLcVZCUUKpL9YF-U3qooJSFqALgPZATMumlnkN8nUiplAqyKXW6kjMYlwDgKprORU38yx-hC3vMm8z8n2PKx9wdFvOrOtHDm54y1YYucuiJ4d9Fjh92vDQccjiLo68iSfi0GIf-fR7HouXu9vnxUO-fLp_XMyXOUmpx7yipqMWrMKqQmsVtC03TIyXlxVqW6aNrPVKUdsAYs1MihB0U60YO1WTPBbn-7vvGAl7G3AgF817cBsMO1M1qaSClFP7HAUfY2D7EynBfBkza7M3Zr6MGdAmGUvY1S-M3Jhc-GEM6Pr_4Os9zEnA1nEwkRwPxJ1LxkbTeff3gU9a8Y1m
CitedBy_id crossref_primary_10_1016_j_comcom_2022_01_020
crossref_primary_10_1007_s10618_017_0504_3
crossref_primary_10_1007_s11740_017_0715_x
crossref_primary_10_1109_TKDE_2018_2832132
crossref_primary_10_3390_data4010007
crossref_primary_10_1016_j_physa_2016_11_091
crossref_primary_10_1007_s11042_020_08620_3
crossref_primary_10_1080_14498596_2021_1896392
crossref_primary_10_1109_ACCESS_2019_2933028
crossref_primary_10_1109_TAFFC_2017_2695605
crossref_primary_10_3390_bdcc3010015
crossref_primary_10_1016_j_hsr_2024_100150
crossref_primary_10_1007_s00500_022_07440_x
crossref_primary_10_3390_systems11040169
crossref_primary_10_1007_s10844_024_00865_w
crossref_primary_10_1016_j_ygeno_2019_01_001
crossref_primary_10_1007_s12652_016_0357_4
crossref_primary_10_1007_s12652_020_01681_0
crossref_primary_10_1109_TBDATA_2020_3034976
crossref_primary_10_3390_app8050704
crossref_primary_10_1016_j_eswa_2024_125223
crossref_primary_10_1155_2022_2520140
crossref_primary_10_1016_S2468_6964_17_30045_9
crossref_primary_10_1007_s11859_017_1228_3
crossref_primary_10_1109_ACCESS_2019_2931756
crossref_primary_10_1007_s42979_025_04095_x
crossref_primary_10_1007_s10660_023_09771_9
crossref_primary_10_1007_s11227_016_1717_8
crossref_primary_10_3390_electronics9020266
crossref_primary_10_1016_j_jpdc_2019_10_006
crossref_primary_10_1109_ACCESS_2019_2897760
crossref_primary_10_1016_j_eswa_2019_112955
crossref_primary_10_1016_j_physa_2019_03_113
crossref_primary_10_1007_s11276_018_01901_8
crossref_primary_10_1016_j_knosys_2019_04_005
crossref_primary_10_1016_j_future_2016_10_019
crossref_primary_10_1016_j_elerap_2020_100938
crossref_primary_10_1109_TKDE_2017_2717984
crossref_primary_10_1007_s10791_018_9327_0
crossref_primary_10_1016_j_ijhm_2020_102710
crossref_primary_10_1016_j_eswa_2021_116262
crossref_primary_10_1007_s00521_024_10828_5
crossref_primary_10_1007_s10844_019_00578_5
crossref_primary_10_1016_j_eswa_2022_117035
crossref_primary_10_1016_j_ins_2020_05_071
crossref_primary_10_1080_09540091_2022_2078280
crossref_primary_10_1016_j_cageo_2021_104935
crossref_primary_10_1016_j_comcom_2023_03_018
crossref_primary_10_1016_j_procs_2019_09_399
crossref_primary_10_1080_10447318_2025_2546662
crossref_primary_10_3390_electronics11162630
crossref_primary_10_1007_s00607_018_0631_8
crossref_primary_10_3390_app10217748
crossref_primary_10_1016_j_eswa_2019_04_001
crossref_primary_10_1007_s00521_020_05085_1
crossref_primary_10_1016_j_eswa_2020_113270
crossref_primary_10_1016_j_knosys_2020_105628
crossref_primary_10_1587_transinf_2020BDP0012
crossref_primary_10_1007_s12652_020_01997_x
crossref_primary_10_1080_17517575_2017_1287429
crossref_primary_10_1109_JIOT_2024_3506713
crossref_primary_10_22581_muet1982_1804_02
crossref_primary_10_1016_j_neucom_2016_10_082
crossref_primary_10_1016_j_physa_2019_04_257
crossref_primary_10_1080_10919392_2020_1718056
crossref_primary_10_3390_systems11080414
crossref_primary_10_1007_s13278_016_0349_6
crossref_primary_10_3233_IDA_192531
crossref_primary_10_1007_s10639_017_9668_0
crossref_primary_10_1108_K_03_2018_0143
crossref_primary_10_1155_2018_5787406
crossref_primary_10_1016_j_csda_2023_107836
crossref_primary_10_1109_TNSE_2018_2815686
crossref_primary_10_1016_j_eswa_2018_03_006
crossref_primary_10_1109_ACCESS_2025_3532697
crossref_primary_10_1145_3661821
crossref_primary_10_3390_electronics8050506
crossref_primary_10_3390_e20010064
crossref_primary_10_1007_s10844_018_0513_8
crossref_primary_10_3390_electronics11213466
crossref_primary_10_1371_journal_pone_0188747
crossref_primary_10_1109_ACCESS_2019_2892289
crossref_primary_10_1080_09720510_2020_1736318
crossref_primary_10_1016_j_techsoc_2020_101464
crossref_primary_10_3390_info12110435
crossref_primary_10_3390_app11146477
crossref_primary_10_1016_j_ipm_2023_103601
crossref_primary_10_1016_j_physa_2019_122244
crossref_primary_10_1007_s00521_021_06493_7
crossref_primary_10_1016_j_is_2021_101742
crossref_primary_10_1109_ACCESS_2018_2810062
crossref_primary_10_3390_electronics9091496
crossref_primary_10_1016_j_future_2019_01_003
crossref_primary_10_1007_s10462_019_09744_1
crossref_primary_10_1109_ACCESS_2019_2895647
crossref_primary_10_1016_j_engappai_2021_104325
crossref_primary_10_1016_j_ins_2017_07_021
crossref_primary_10_1186_s40064_016_1841_1
crossref_primary_10_1016_j_asoc_2018_11_018
crossref_primary_10_3390_ijgi12020079
crossref_primary_10_1016_j_physa_2019_122255
crossref_primary_10_1016_j_neucom_2015_11_059
crossref_primary_10_1007_s13042_021_01409_2
crossref_primary_10_1016_j_knosys_2017_03_023
crossref_primary_10_1016_j_knosys_2016_01_011
crossref_primary_10_1016_j_comcom_2022_11_011
crossref_primary_10_1016_j_ins_2019_12_038
crossref_primary_10_1016_j_procs_2020_09_283
crossref_primary_10_1007_s10796_022_10262_9
crossref_primary_10_1093_joclec_nhad009
crossref_primary_10_3390_electronics12224564
crossref_primary_10_1109_ACCESS_2018_2890553
crossref_primary_10_1016_j_neucom_2014_08_103
crossref_primary_10_1016_j_ins_2019_07_081
crossref_primary_10_1145_3134728
crossref_primary_10_3233_HIS_240003
crossref_primary_10_1016_j_comcom_2015_11_005
crossref_primary_10_1007_s00500_019_03807_9
crossref_primary_10_1007_s12652_020_02714_4
crossref_primary_10_1080_02522667_2019_1580881
crossref_primary_10_1016_j_eswa_2023_122880
crossref_primary_10_1371_journal_pone_0204434
crossref_primary_10_1016_j_knosys_2017_06_034
crossref_primary_10_1016_j_procs_2017_11_157
crossref_primary_10_1109_ACCESS_2018_2877208
crossref_primary_10_3390_sym16121602
crossref_primary_10_3233_AIS_200585
crossref_primary_10_1145_3767326
crossref_primary_10_1109_TITS_2022_3228293
crossref_primary_10_1287_isre_2021_0281
crossref_primary_10_3390_app15084170
crossref_primary_10_1016_j_ins_2022_05_025
crossref_primary_10_3390_s19020431
crossref_primary_10_1016_j_neunet_2020_01_021
crossref_primary_10_1016_j_knosys_2022_108954
crossref_primary_10_1016_j_knosys_2019_03_032
crossref_primary_10_1145_3469799
crossref_primary_10_1007_s10844_020_00613_w
crossref_primary_10_1016_j_neucom_2019_04_079
crossref_primary_10_1016_j_comnet_2017_04_016
crossref_primary_10_1016_j_ins_2019_11_045
crossref_primary_10_1108_OIR_12_2016_0360
crossref_primary_10_1007_s12652_018_0807_2
crossref_primary_10_1016_j_osnem_2020_100070
crossref_primary_10_1016_j_knosys_2016_05_037
crossref_primary_10_1016_j_heliyon_2021_e07397
crossref_primary_10_1016_j_ijinfomgt_2018_10_010
crossref_primary_10_1016_j_procs_2018_10_524
crossref_primary_10_1016_j_jbi_2020_103635
crossref_primary_10_1108_APJML_10_2016_0188
crossref_primary_10_1016_j_amc_2022_127549
crossref_primary_10_1049_sfw2_12118
crossref_primary_10_1002_cpe_5572
crossref_primary_10_1145_3290768_3290775
crossref_primary_10_1016_j_future_2018_05_070
crossref_primary_10_3390_s20072098
crossref_primary_10_1145_3387162
crossref_primary_10_1016_j_jksuci_2020_09_010
crossref_primary_10_1109_ACCESS_2018_2871681
crossref_primary_10_1109_ACCESS_2020_3001210
crossref_primary_10_1016_j_future_2016_05_040
crossref_primary_10_1109_JSYST_2015_2427193
crossref_primary_10_1016_j_eswa_2023_120699
crossref_primary_10_1007_s12351_017_0325_6
crossref_primary_10_1108_OIR_05_2018_0177
crossref_primary_10_1109_TKDE_2022_3187434
crossref_primary_10_1016_j_datak_2023_102142
crossref_primary_10_1007_s13042_017_0778_1
crossref_primary_10_1007_s11036_018_1112_1
crossref_primary_10_1007_s10462_017_9539_5
crossref_primary_10_1016_j_comcom_2016_12_011
crossref_primary_10_1016_j_ins_2017_09_050
crossref_primary_10_1109_ACCESS_2019_2895824
crossref_primary_10_1109_ACCESS_2022_3141795
crossref_primary_10_1016_j_ins_2019_08_009
crossref_primary_10_1007_s13748_017_0133_5
crossref_primary_10_1155_2017_2587069
crossref_primary_10_1080_00207543_2017_1287443
crossref_primary_10_1016_j_is_2015_07_008
crossref_primary_10_1109_TC_2023_3275107
crossref_primary_10_1371_journal_pone_0315533
crossref_primary_10_1016_j_eswa_2022_116963
crossref_primary_10_1016_j_neucom_2023_126441
crossref_primary_10_1007_s11336_023_09926_5
crossref_primary_10_1109_TITS_2021_3125372
crossref_primary_10_1109_TSC_2014_2365797
crossref_primary_10_1007_s11042_017_4620_2
crossref_primary_10_1007_s10796_019_09935_9
crossref_primary_10_1002_cpe_3900
crossref_primary_10_1007_s10115_024_02315_z
crossref_primary_10_1142_S2196888819500040
crossref_primary_10_1155_2019_1326831
crossref_primary_10_1007_s10586_017_1414_2
crossref_primary_10_1145_3137597_3137599
crossref_primary_10_1145_3674723
crossref_primary_10_1145_2951952
crossref_primary_10_1007_s10844_024_00906_4
crossref_primary_10_1016_j_jocs_2018_08_007
crossref_primary_10_1016_j_neunet_2018_12_011
crossref_primary_10_1145_3757057
crossref_primary_10_1155_2021_3400943
crossref_primary_10_1145_3473338
crossref_primary_10_1016_j_future_2019_04_018
crossref_primary_10_1109_ACCESS_2018_2842257
crossref_primary_10_1007_s12652_019_01256_8
crossref_primary_10_1016_j_jnca_2020_102579
crossref_primary_10_1016_j_procs_2018_08_263
crossref_primary_10_1111_exsy_13478
crossref_primary_10_1007_s11042_022_12231_5
crossref_primary_10_1109_ACCESS_2023_3276988
crossref_primary_10_1109_TCSS_2017_2772295
crossref_primary_10_4018_IJKSS_2019040102
crossref_primary_10_3233_WEB_190415
crossref_primary_10_1016_j_future_2021_06_008
crossref_primary_10_3390_electronics13142811
crossref_primary_10_1155_2019_3965845
crossref_primary_10_1007_s11042_023_16169_0
crossref_primary_10_1109_ACCESS_2019_2928574
crossref_primary_10_1109_ACCESS_2020_3034716
crossref_primary_10_1016_j_physa_2016_01_051
crossref_primary_10_1016_j_neucom_2018_07_035
crossref_primary_10_3390_pr7050265
crossref_primary_10_1109_TNET_2020_2976927
crossref_primary_10_1016_j_knosys_2021_106817
crossref_primary_10_1155_2022_6958596
crossref_primary_10_1016_j_eswa_2017_01_060
crossref_primary_10_1007_s10489_017_0973_5
crossref_primary_10_1177_0165551519849510
Cites_doi 10.1145/2339530.2339728
10.1145/2043932.2043972
10.1016/j.eswa.2009.12.061
10.1155/2009/421425
10.1145/1571941.1571978
10.1145/1935826.1935877
10.1145/1273496.1273596
10.1145/1963405.1963481
10.1145/1639714.1639745
10.1038/44565
10.1145/1297231.1297235
10.1109/TKDE.2005.99
10.1145/1835804.1835893
10.1145/2043932.2043965
10.1145/963770.963772
10.1145/2043932.2043947
10.1146/annurev.soc.27.1.415
10.1109/ICDM.2008.22
10.1145/1557019.1557072
10.1007/978-3-540-24747-0_19
10.1109/ICDM.2008.16
10.1145/582415.582418
10.1016/j.dss.2006.11.003
10.1109/TPDS.2012.192
10.1145/1835804.1835895
10.1145/1040830.1040870
10.1145/1557019.1557067
10.1007/978-0-387-85820-3
10.1145/1458082.1458205
10.1145/1864708.1864736
10.1145/1864708.1864731
10.1007/978-3-540-24747-0_17
10.1145/2187836.2187952
10.1145/2043932.2043978
10.1145/2365952.2365969
10.1145/1401890.1401944
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.comcom.2013.06.009
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-703X
EndPage 10
ExternalDocumentID 28282340
10_1016_j_comcom_2013_06_009
S0140366413001722
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
~HD
ABTAH
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-2c8dc90f4a22aff4099e8ecea552a6f10f4376b4c980aa7eec4ca0682bead47c3
ISICitedReferencesCount 324
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334484700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-3664
IngestDate Wed Apr 02 07:26:07 EDT 2025
Tue Nov 18 22:42:21 EST 2025
Sat Nov 29 04:00:59 EST 2025
Fri Feb 23 02:23:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Collaborative filtering
Social network
Recommender system
Matrix factorization
Recommendation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-2c8dc90f4a22aff4099e8ecea552a6f10f4376b4c980aa7eec4ca0682bead47c3
PageCount 10
ParticipantIDs pascalfrancis_primary_28282340
crossref_primary_10_1016_j_comcom_2013_06_009
crossref_citationtrail_10_1016_j_comcom_2013_06_009
elsevier_sciencedirect_doi_10_1016_j_comcom_2013_06_009
PublicationCentury 2000
PublicationDate 2014-03-15
PublicationDateYYYYMMDD 2014-03-15
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Computer communications
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References McPherson, Smith-Lovin, Cook (b0225) 2001; 27
M. Jahrer, A. Toscher, R. Legenstein, Combining predictions for accurate recommender systems, in: Proc. of KDD ’10, Washington, DC, USA, 2010, pp. 693–702.
T. DuBois, J. Golbeck, J. Kleint, A. Srinivasan, Improving recommendation accuracy by clustering social neworks with trust, in: Proceedings of the ACM RecSys 2009 Workshop on Recommender Systems and the Social Web, Oct. 2009.
X. Yang, H. Steck, Y.Guo, Y. Liu, On Top-k recommendation using social networks, in: ACM Conference on Recommender Systems (RecSys’12), 2012.
S.M. McNee, J. Riedl, J.A. Konstan, Being accurate is not enough: how accuracy metrics have hurt recommender systems, in: Proceeding CHI EA ’06 CHI ’06 Extended Abstracts on Human factors in Computing Systems.
F. Ricci, L. Rokach, B. Shapira, P.B. (Eds.), Kantor Recommender Systems Handbook, first ed., 2011, XXX, 842 p. 20 illus
H. Steck, Training and testing of recommender systems on data missing not at random, in: ACM Conference on Knowledge Discovery and Data Mining, 2010, pp. 713–722.
Ziegler, Golbeck (b0245) 2007; 43
YouTube, available at
R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in: NIPS 2008, vol. 20.
J. O’Donovan, B. Smyth, Trust in recommender systems, in: Proceedings of the 10th International Conference on Intelligent User Interfaces, 2005.
Facebook
Lee, Seung (b0160) 1999; 401
Keshavan, Montanari, Oh (b0055) 2010; 11
Twitter, available at
Sarwar, Karypis, Konstan, Reidl (b0310) 2001
Adomavicius, Tuzhilin (b0005) June 2005; 17
Y. Koren, Collaborative filtering with temporal dynamics, in: Proc. of KDD ’09, Paris, France, 2009, pp. 447–456.
V. Vasuki, N. Natarajan, Z. Lu, I. Dhillon, Affiliation recommendation using auxiliary networks, in: ACM Conference on Recommender Systems (RecSys’2010), 2010.
.
M.A. Tayebi, M. Jamali, M. Ester, U. Glasser, R. Frank, CrimeWalker: a recommendation model for suspect investigation, in: RecSys ’11 Proceedings of the fifth ACM conference on Recommender systems, 2011.
J.A. Golbeck, Computing and applying trust in web-based social networks, PhD. Dissertation, 2005.
Su, Khoshgoftaar (b0015) 2009; 2009
S. Funk, Netflix update: try this at home, 2006
P. Massa, B. Bhattacharjee, Using trust in recommender systems: an experimental analysis, in Proceedings of iTrust2004 International Conference, 2004, pp. 221–235.
H. Ma, I. King, M.R. Lyu, Learning to recommend with social trust ensemble, in: ACM Conference on Research and Development in Information Retrieval (SIGIR), 2009.
X. Yang, H. Steck, Y. Liu, Circle-based recommendation in online social networks, in: Proceedings of 2012 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12).
J. Noel, S. Sanner, K.-N. Tran, P. Christen, L. Xie, E. Bonilla, E. Abbasnejad, N.D. Penna, New objective functions for social collaborative filtering, in: Proceedings of the 21st International Conference on World Wide Web (www2012).
Y. Xin, H. Steck, Multi-value probabilistic matrix factorization for IP-TV recommendations, in: ACM Conference on Recommender Systems (RecSys), 2011.
P. Bedi, H. Kaur, S. Marwaha, Trust based recommender system for semantic web, in: Proc. of IJCAI ’07, 2007, pp. 2677–2682.
K. Sarda, P. Gupta, D. Mukherjee, S. Padhy, H. Saran, A distributed trust-based recommendation system on social network, in: Proceedings of the 10th Second IEEE Workshop on Hot Topics in Web Systems and Technologies, 2008.
H. Ma, H. Yang, M.R. Lyu, I. King, Sorec: social recommendation using probabilistic matrix factorization, in: International Conference on Information and Knowledge Management (CIKM), 2008.
Epinions, available at
M. Jamali, M. Ester, Trustwalker: a random walk model for combining trust-based and item-based recommendation, in: ACM Conference on Knowledge Discovery and Data Mining (KDD), 2009.
M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation, in: Social Networks Proceedings of the 2010 ACM conference on Recommender systems(RecSys), 2010.
S.-H. Yang, B. Long, A.J. Smola, N. Sadagopan, Z. Zheng, H. Zha, Like alike: joint friendship and interest propagation in social networks, in: Proceedings of the 20th International Conference on World Wide Web (www2011).
L. Yu, R. Pan, Z. Li, Adaptive social similarities for recommender systems, in: RecSys ’11 Proceedings of the Fifth ACM Conference on Recommender Systems, 2011.
Google Plus
Flixster
R. Salakhutdinov, A. Mnih, G. Hinton, Restricted Boltzmann machines for collaborative filtering, in: International Conference on Machine Learning (ICML), 2007.
Jarvelin, Kekalainen (b0315) 2002; 20
P. Symeonidis, E. Tiakas, Y. Manolopoulos, Product recommendation and rating prediction based on multi-modal social networks, in: Proceedings of the 5th ACM Conference in Recommender Systems (RecSys’2011), Chicago, IL, 2011.
Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, in: ACM Conference on Knowledge Discovery and Data Mining, 2008, pp. 426–34.
C.-N. Ziegler, G. Lausen, Analyzing correlation between trust and user similarity in online communities, in: Proceedings of Second International Conference on Trust Management, 2004, pp. 251–265.
R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, Q. Yang, One-class collaborative filtering, in: IEEE International Conference on Data Mining (ICDM), 2008.
H. Ma, D. Zhou, C. Liu, M.R. Lyu, I. King, Recommender systems with social regularization, in: ACM International Conference on Web Search and Data Mining (WSDM), 2011.
Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback datasets, in: IEEE International Conference on Data Mining (ICDM), 2008.
Liu, Lee (b0345) 2010; 37
NetflixPrize, available at
P. Massa, P. Avesani, Controversial users demand local trust metrics: an experimental study on epinions.com community, in: Proceedings of the 25th American Association for Artificial Intelligence Conference, 2005.
A. Paterek, Improving regularized singular value decomposition for collaborative filtering, in: KDDCup, 2007.
Walter, Battiston, Schweitzer (b0275) 2007; 16
S. Deerwester, S. Dumais, G. Furnas, R. Harshman, T. Landauer, K. Lochbaum, L. Streeter et al., Latent semantic analysis/ indexing
Herlocker, Konstan, Terveen, Riedl (b0390) 2004; 22
J. Golbeck, J. Hendler, FilmTrust: movie recommendations using trust in web-based social networks, in: Proceedings of the IEEE Consumer Communications and Networking Conference, Jan. 2006, pp. 282–286.
M. Jamali, M. Ester, Using a trust network to improve top-n recommendation, in: ACM Conference on Recommender Systems (RecSys), 2009.
X. Yang, Y. Guo Y. Liu, Bayesian-inference based recommendation in online social networks, in: IEEE Transactions on Parallel and Distributed Systems (TPDS), 2013, pp. 642–651.
P. Massa, P. Avesani, Trust-aware recommender systems, in: Proceedings of the 2007 ACM Conference on Recommender Systems, 2007.
Yuan, Zhao, Chen, Liu, Ding, Zhang, Zheng (b0370) 2009
10.1016/j.comcom.2013.06.009_b0105
Jarvelin (10.1016/j.comcom.2013.06.009_b0315) 2002; 20
Ziegler (10.1016/j.comcom.2013.06.009_b0245) 2007; 43
10.1016/j.comcom.2013.06.009_b0305
10.1016/j.comcom.2013.06.009_b0140
10.1016/j.comcom.2013.06.009_b0260
10.1016/j.comcom.2013.06.009_b0065
10.1016/j.comcom.2013.06.009_b0340
10.1016/j.comcom.2013.06.009_b0185
10.1016/j.comcom.2013.06.009_b0265
10.1016/j.comcom.2013.06.009_b0385
McPherson (10.1016/j.comcom.2013.06.009_b0225) 2001; 27
10.1016/j.comcom.2013.06.009_b0300
Sarwar (10.1016/j.comcom.2013.06.009_b0310) 2001
10.1016/j.comcom.2013.06.009_b0180
10.1016/j.comcom.2013.06.009_b0380
10.1016/j.comcom.2013.06.009_b0060
Herlocker (10.1016/j.comcom.2013.06.009_b0390) 2004; 22
10.1016/j.comcom.2013.06.009_b0115
10.1016/j.comcom.2013.06.009_b0235
10.1016/j.comcom.2013.06.009_b0195
10.1016/j.comcom.2013.06.009_b0230
Liu (10.1016/j.comcom.2013.06.009_b0345) 2010; 37
Adomavicius (10.1016/j.comcom.2013.06.009_b0005) 2005; 17
10.1016/j.comcom.2013.06.009_b0350
10.1016/j.comcom.2013.06.009_b0155
10.1016/j.comcom.2013.06.009_b0110
10.1016/j.comcom.2013.06.009_b0355
Su (10.1016/j.comcom.2013.06.009_b0015) 2009; 2009
10.1016/j.comcom.2013.06.009_b0190
10.1016/j.comcom.2013.06.009_b0270
10.1016/j.comcom.2013.06.009_b0325
10.1016/j.comcom.2013.06.009_b0360
10.1016/j.comcom.2013.06.009_b0040
Walter (10.1016/j.comcom.2013.06.009_b0275) 2007; 16
10.1016/j.comcom.2013.06.009_b0285
10.1016/j.comcom.2013.06.009_b0240
10.1016/j.comcom.2013.06.009_b0320
10.1016/j.comcom.2013.06.009_b0165
10.1016/j.comcom.2013.06.009_b0365
10.1016/j.comcom.2013.06.009_b0080
10.1016/j.comcom.2013.06.009_b0280
10.1016/j.comcom.2013.06.009_b0335
10.1016/j.comcom.2013.06.009_b0215
10.1016/j.comcom.2013.06.009_b0250
10.1016/j.comcom.2013.06.009_b0010
10.1016/j.comcom.2013.06.009_b0175
10.1016/j.comcom.2013.06.009_b0130
10.1016/j.comcom.2013.06.009_b0295
Lee (10.1016/j.comcom.2013.06.009_b0160) 1999; 401
10.1016/j.comcom.2013.06.009_b0375
10.1016/j.comcom.2013.06.009_b0330
10.1016/j.comcom.2013.06.009_b0135
10.1016/j.comcom.2013.06.009_b0255
10.1016/j.comcom.2013.06.009_b0290
10.1016/j.comcom.2013.06.009_b0170
Keshavan (10.1016/j.comcom.2013.06.009_b0055) 2010; 11
Yuan (10.1016/j.comcom.2013.06.009_b0370) 2009
References_xml – volume: 43
  start-page: 460
  year: 2007
  end-page: 475
  ident: b0245
  article-title: Investigating interactions of trust and interest similarity
  publication-title: Decision Support Systems
– volume: 20
  start-page: 422C
  year: 2002
  end-page: 446
  ident: b0315
  article-title: Cumulated gain-based evaluation of ir techniques
  publication-title: ACM Transactions on Information Systems
– reference: Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback datasets, in: IEEE International Conference on Data Mining (ICDM), 2008.
– reference: J. Golbeck, J. Hendler, FilmTrust: movie recommendations using trust in web-based social networks, in: Proceedings of the IEEE Consumer Communications and Networking Conference, Jan. 2006, pp. 282–286.
– reference: P. Symeonidis, E. Tiakas, Y. Manolopoulos, Product recommendation and rating prediction based on multi-modal social networks, in: Proceedings of the 5th ACM Conference in Recommender Systems (RecSys’2011), Chicago, IL, 2011.
– reference: X. Yang, H. Steck, Y.Guo, Y. Liu, On Top-k recommendation using social networks, in: ACM Conference on Recommender Systems (RecSys’12), 2012.
– reference: F. Ricci, L. Rokach, B. Shapira, P.B. (Eds.), Kantor Recommender Systems Handbook, first ed., 2011, XXX, 842 p. 20 illus
– volume: 37
  start-page: 4772
  year: 2010
  end-page: 4778
  ident: b0345
  article-title: Use of social network information to enhance collaborative filtering performance
  publication-title: Expert System Applications
– reference: S.M. McNee, J. Riedl, J.A. Konstan, Being accurate is not enough: how accuracy metrics have hurt recommender systems, in: Proceeding CHI EA ’06 CHI ’06 Extended Abstracts on Human factors in Computing Systems.
– year: 2009
  ident: b0370
  article-title: Augmenting collaborative recommender by fusing explicit social relationships
– reference: S. Funk, Netflix update: try this at home, 2006,
– reference: J. O’Donovan, B. Smyth, Trust in recommender systems, in: Proceedings of the 10th International Conference on Intelligent User Interfaces, 2005.
– reference: YouTube, available at
– volume: 17
  year: June 2005
  ident: b0005
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: H. Steck, Training and testing of recommender systems on data missing not at random, in: ACM Conference on Knowledge Discovery and Data Mining, 2010, pp. 713–722.
– reference: Twitter, available at
– reference: NetflixPrize, available at
– reference: M.A. Tayebi, M. Jamali, M. Ester, U. Glasser, R. Frank, CrimeWalker: a recommendation model for suspect investigation, in: RecSys ’11 Proceedings of the fifth ACM conference on Recommender systems, 2011.
– volume: 2009
  start-page: 19
  year: 2009
  ident: b0015
  article-title: A survey of collaborative filtering techniques
  publication-title: Advances in Artificial Intelligence
– volume: 27
  start-page: 415
  year: 2001
  end-page: 444
  ident: b0225
  article-title: Birds of a Feather: homophily in social networks
  publication-title: Annual Review of Sociology
– reference: S.-H. Yang, B. Long, A.J. Smola, N. Sadagopan, Z. Zheng, H. Zha, Like alike: joint friendship and interest propagation in social networks, in: Proceedings of the 20th International Conference on World Wide Web (www2011).
– reference: Google Plus,
– reference: H. Ma, H. Yang, M.R. Lyu, I. King, Sorec: social recommendation using probabilistic matrix factorization, in: International Conference on Information and Knowledge Management (CIKM), 2008.
– reference: M. Jahrer, A. Toscher, R. Legenstein, Combining predictions for accurate recommender systems, in: Proc. of KDD ’10, Washington, DC, USA, 2010, pp. 693–702.
– reference: R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, Q. Yang, One-class collaborative filtering, in: IEEE International Conference on Data Mining (ICDM), 2008.
– reference: H. Ma, D. Zhou, C. Liu, M.R. Lyu, I. King, Recommender systems with social regularization, in: ACM International Conference on Web Search and Data Mining (WSDM), 2011.
– reference: X. Yang, Y. Guo Y. Liu, Bayesian-inference based recommendation in online social networks, in: IEEE Transactions on Parallel and Distributed Systems (TPDS), 2013, pp. 642–651.
– reference: M. Jamali, M. Ester, Using a trust network to improve top-n recommendation, in: ACM Conference on Recommender Systems (RecSys), 2009.
– reference: M. Jamali, M. Ester, Trustwalker: a random walk model for combining trust-based and item-based recommendation, in: ACM Conference on Knowledge Discovery and Data Mining (KDD), 2009.
– reference: L. Yu, R. Pan, Z. Li, Adaptive social similarities for recommender systems, in: RecSys ’11 Proceedings of the Fifth ACM Conference on Recommender Systems, 2011.
– reference: K. Sarda, P. Gupta, D. Mukherjee, S. Padhy, H. Saran, A distributed trust-based recommendation system on social network, in: Proceedings of the 10th Second IEEE Workshop on Hot Topics in Web Systems and Technologies, 2008.
– volume: 16
  start-page: 1573
  year: 2007
  end-page: 7454
  ident: b0275
  article-title: A model of a trust-based recommendation system on a social network
  publication-title: Autonomous Agents and Multi-Agent Systems
– reference: Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, in: ACM Conference on Knowledge Discovery and Data Mining, 2008, pp. 426–34.
– reference: P. Bedi, H. Kaur, S. Marwaha, Trust based recommender system for semantic web, in: Proc. of IJCAI ’07, 2007, pp. 2677–2682.
– reference: J. Noel, S. Sanner, K.-N. Tran, P. Christen, L. Xie, E. Bonilla, E. Abbasnejad, N.D. Penna, New objective functions for social collaborative filtering, in: Proceedings of the 21st International Conference on World Wide Web (www2012).
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: b0160
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– reference: C.-N. Ziegler, G. Lausen, Analyzing correlation between trust and user similarity in online communities, in: Proceedings of Second International Conference on Trust Management, 2004, pp. 251–265.
– reference: J.A. Golbeck, Computing and applying trust in web-based social networks, PhD. Dissertation, 2005.
– reference: Facebook,
– reference: X. Yang, H. Steck, Y. Liu, Circle-based recommendation in online social networks, in: Proceedings of 2012 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12).
– volume: 11
  start-page: 2057
  year: 2010
  end-page: 2078
  ident: b0055
  article-title: Matrix completion from noisy entries
  publication-title: Journal of Machine Learning Research
– reference: Y. Koren, Collaborative filtering with temporal dynamics, in: Proc. of KDD ’09, Paris, France, 2009, pp. 447–456.
– reference: P. Massa, P. Avesani, Trust-aware recommender systems, in: Proceedings of the 2007 ACM Conference on Recommender Systems, 2007.
– start-page: 285C
  year: 2001
  end-page: 295
  ident: b0310
  article-title: Item-based collaborative filtering recommendation algorithms
  publication-title: WWW’ 01: Proceedings of the 10th International Conference on World Wide Web
– reference: A. Paterek, Improving regularized singular value decomposition for collaborative filtering, in: KDDCup, 2007.
– reference: M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation, in: Social Networks Proceedings of the 2010 ACM conference on Recommender systems(RecSys), 2010.
– reference: R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in: NIPS 2008, vol. 20.
– reference: Flixster,
– reference: S. Deerwester, S. Dumais, G. Furnas, R. Harshman, T. Landauer, K. Lochbaum, L. Streeter et al., Latent semantic analysis/ indexing,
– reference: Y. Xin, H. Steck, Multi-value probabilistic matrix factorization for IP-TV recommendations, in: ACM Conference on Recommender Systems (RecSys), 2011.
– reference: Epinions, available at
– reference: T. DuBois, J. Golbeck, J. Kleint, A. Srinivasan, Improving recommendation accuracy by clustering social neworks with trust, in: Proceedings of the ACM RecSys 2009 Workshop on Recommender Systems and the Social Web, Oct. 2009.
– reference: .
– reference: P. Massa, P. Avesani, Controversial users demand local trust metrics: an experimental study on epinions.com community, in: Proceedings of the 25th American Association for Artificial Intelligence Conference, 2005.
– reference: H. Ma, I. King, M.R. Lyu, Learning to recommend with social trust ensemble, in: ACM Conference on Research and Development in Information Retrieval (SIGIR), 2009.
– reference: R. Salakhutdinov, A. Mnih, G. Hinton, Restricted Boltzmann machines for collaborative filtering, in: International Conference on Machine Learning (ICML), 2007.
– reference: V. Vasuki, N. Natarajan, Z. Lu, I. Dhillon, Affiliation recommendation using auxiliary networks, in: ACM Conference on Recommender Systems (RecSys’2010), 2010.
– reference: P. Massa, B. Bhattacharjee, Using trust in recommender systems: an experimental analysis, in Proceedings of iTrust2004 International Conference, 2004, pp. 221–235.
– volume: 22
  start-page: 5
  year: 2004
  end-page: 53
  ident: b0390
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Transactions on Information Systems
– ident: 10.1016/j.comcom.2013.06.009_b0360
  doi: 10.1145/2339530.2339728
– ident: 10.1016/j.comcom.2013.06.009_b0115
  doi: 10.1145/2043932.2043972
– volume: 16
  start-page: 1573
  issue: 1
  year: 2007
  ident: 10.1016/j.comcom.2013.06.009_b0275
  article-title: A model of a trust-based recommendation system on a social network
  publication-title: Autonomous Agents and Multi-Agent Systems
– volume: 37
  start-page: 4772
  issue: 7
  year: 2010
  ident: 10.1016/j.comcom.2013.06.009_b0345
  article-title: Use of social network information to enhance collaborative filtering performance
  publication-title: Expert System Applications
  doi: 10.1016/j.eswa.2009.12.061
– ident: 10.1016/j.comcom.2013.06.009_b0385
– volume: 2009
  start-page: 19
  year: 2009
  ident: 10.1016/j.comcom.2013.06.009_b0015
  article-title: A survey of collaborative filtering techniques
  publication-title: Advances in Artificial Intelligence
  doi: 10.1155/2009/421425
– ident: 10.1016/j.comcom.2013.06.009_b0330
  doi: 10.1145/1571941.1571978
– ident: 10.1016/j.comcom.2013.06.009_b0335
  doi: 10.1145/1935826.1935877
– volume: 11
  start-page: 2057
  year: 2010
  ident: 10.1016/j.comcom.2013.06.009_b0055
  article-title: Matrix completion from noisy entries
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.comcom.2013.06.009_b0140
  doi: 10.1145/1273496.1273596
– ident: 10.1016/j.comcom.2013.06.009_b0285
– ident: 10.1016/j.comcom.2013.06.009_b0350
  doi: 10.1145/1963405.1963481
– ident: 10.1016/j.comcom.2013.06.009_b0300
  doi: 10.1145/1639714.1639745
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.comcom.2013.06.009_b0160
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– ident: 10.1016/j.comcom.2013.06.009_b0255
  doi: 10.1145/1297231.1297235
– start-page: 285C
  year: 2001
  ident: 10.1016/j.comcom.2013.06.009_b0310
  article-title: Item-based collaborative filtering recommendation algorithms
– ident: 10.1016/j.comcom.2013.06.009_b0195
– volume: 17
  issue: 6
  year: 2005
  ident: 10.1016/j.comcom.2013.06.009_b0005
  article-title: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2005.99
– ident: 10.1016/j.comcom.2013.06.009_b0040
  doi: 10.1145/1835804.1835893
– ident: 10.1016/j.comcom.2013.06.009_b0305
  doi: 10.1145/2043932.2043965
– ident: 10.1016/j.comcom.2013.06.009_b0080
– volume: 22
  start-page: 5
  issue: 1
  year: 2004
  ident: 10.1016/j.comcom.2013.06.009_b0390
  article-title: Evaluating collaborative filtering recommender systems
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/963770.963772
– ident: 10.1016/j.comcom.2013.06.009_b0380
  doi: 10.1145/2043932.2043947
– volume: 27
  start-page: 415
  issue: 1
  year: 2001
  ident: 10.1016/j.comcom.2013.06.009_b0225
  article-title: Birds of a Feather: homophily in social networks
  publication-title: Annual Review of Sociology
  doi: 10.1146/annurev.soc.27.1.415
– ident: 10.1016/j.comcom.2013.06.009_b0110
  doi: 10.1109/ICDM.2008.22
– ident: 10.1016/j.comcom.2013.06.009_b0065
  doi: 10.1145/1557019.1557072
– ident: 10.1016/j.comcom.2013.06.009_b0180
– ident: 10.1016/j.comcom.2013.06.009_b0265
– ident: 10.1016/j.comcom.2013.06.009_b0230
– ident: 10.1016/j.comcom.2013.06.009_b0135
– ident: 10.1016/j.comcom.2013.06.009_b0240
  doi: 10.1007/978-3-540-24747-0_19
– ident: 10.1016/j.comcom.2013.06.009_b0130
  doi: 10.1109/ICDM.2008.16
– ident: 10.1016/j.comcom.2013.06.009_b0165
– ident: 10.1016/j.comcom.2013.06.009_b0190
– volume: 20
  start-page: 422C
  issue: 4
  year: 2002
  ident: 10.1016/j.comcom.2013.06.009_b0315
  article-title: Cumulated gain-based evaluation of ir techniques
  publication-title: ACM Transactions on Information Systems
  doi: 10.1145/582415.582418
– volume: 43
  start-page: 460
  issue: 2
  year: 2007
  ident: 10.1016/j.comcom.2013.06.009_b0245
  article-title: Investigating interactions of trust and interest similarity
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2006.11.003
– ident: 10.1016/j.comcom.2013.06.009_b0290
  doi: 10.1109/TPDS.2012.192
– ident: 10.1016/j.comcom.2013.06.009_b0105
  doi: 10.1145/1835804.1835895
– year: 2009
  ident: 10.1016/j.comcom.2013.06.009_b0370
– ident: 10.1016/j.comcom.2013.06.009_b0235
– ident: 10.1016/j.comcom.2013.06.009_b0260
– ident: 10.1016/j.comcom.2013.06.009_b0155
– ident: 10.1016/j.comcom.2013.06.009_b0270
  doi: 10.1145/1040830.1040870
– ident: 10.1016/j.comcom.2013.06.009_b0295
  doi: 10.1145/1557019.1557067
– ident: 10.1016/j.comcom.2013.06.009_b0170
– ident: 10.1016/j.comcom.2013.06.009_b0010
  doi: 10.1007/978-0-387-85820-3
– ident: 10.1016/j.comcom.2013.06.009_b0325
  doi: 10.1145/1458082.1458205
– ident: 10.1016/j.comcom.2013.06.009_b0320
  doi: 10.1145/1864708.1864736
– ident: 10.1016/j.comcom.2013.06.009_b0375
  doi: 10.1145/1864708.1864731
– ident: 10.1016/j.comcom.2013.06.009_b0185
– ident: 10.1016/j.comcom.2013.06.009_b0250
  doi: 10.1007/978-3-540-24747-0_17
– ident: 10.1016/j.comcom.2013.06.009_b0355
  doi: 10.1145/2187836.2187952
– ident: 10.1016/j.comcom.2013.06.009_b0280
– ident: 10.1016/j.comcom.2013.06.009_b0340
  doi: 10.1145/2043932.2043978
– ident: 10.1016/j.comcom.2013.06.009_b0365
  doi: 10.1145/2365952.2365969
– ident: 10.1016/j.comcom.2013.06.009_b0060
  doi: 10.1145/1401890.1401944
– ident: 10.1016/j.comcom.2013.06.009_b0215
– ident: 10.1016/j.comcom.2013.06.009_b0175
SSID ssj0004773
Score 2.5715852
Snippet Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest to a user items that might be of interest to...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Applied sciences
Collaborative filtering
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Recommender system
Social network
Software
Title A survey of collaborative filtering based social recommender systems
URI https://dx.doi.org/10.1016/j.comcom.2013.06.009
Volume 41
WOSCitedRecordID wos000334484700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-703X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004773
  issn: 0140-3664
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wGEEJ9ifEx-4A1FSmwnth8rGBoITUgMqXuKHNeWOrG0atqx_fc7f8TJmGDsgZeochsn9f1yd7787g6hd6xsGAU7l1kuaMa0FVlDicxIVepCs6KQSvtmE_zwUMxm8luk23a-nQBvW3F-Llf_VdQwBsJ2qbO3EHeaFAbgMwgdjiB2OP6T4Kfvu-36zFwEwniSsqvuvXCvxl1swNmuFC93e-LTU99SLhZ27sYua9_3wbHPh1yS5Iofx4DzbPFLRSvo6DxbH4I9Hg19XWz90HIY-r4xQRsfKBcZG0cgCuYoWCEHMwUlQZdXoRp5r1VDOauoFouRfQ0s1muaOwQRTtzCOxoPXIf6wqq5HCxV_3b-NwOWaIU9Y-2kDrPUbpbaE_fkXbRDeCnFBO1MP-_PvgzJszzQEPo_0edXehLg9bv5k__ycKU6eKpsaIcy8lGOHqNHcXOBpwEUT9Ad0z5FD0YlJ5-hj1Mc4IGXFl-BB07wwB4eOMADj-CBIzyeox-f9o8-HGSxk0amKa02GdFirmVumSJEWQt7emmE0UaVJVGVLeAbMDQN01LkSnFjNNMqrwRpQNEwrukLNGmXrXmJMNiHOQWXhhJFmK92J2nOGlDlynJWzncR7den1rHMvOt28rP-m3R2UZbOWoUyKzf8nvdLX0dXMbiANeDphjP3rkgqXc7FHghl-atb3sprdH94KN6gyWa9NW_RPX22WXTrvYi2S2iCmKQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+collaborative+filtering+based+social+recommender+systems&rft.jtitle=Computer+communications&rft.au=Yang%2C+Xiwang&rft.au=Guo%2C+Yang&rft.au=Liu%2C+Yong&rft.au=Steck%2C+Harald&rft.date=2014-03-15&rft.issn=0140-3664&rft.volume=41&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.comcom.2013.06.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comcom_2013_06_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon