Connectivity of projected high dimensional data charts on one-dimensional curves

We propose a principal curve tracing algorithm, which uses the gradient and the Hessian of a given density estimate. Curve definition requires the local smoothness of data density and is based on the concept of subspace local maxima. Tracing of the curve is handled through the leading eigenvector wh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 91; číslo 10; s. 2404 - 2409
Hlavní autoři: Bas, E., Erdogmus, D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.10.2011
Elsevier
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a principal curve tracing algorithm, which uses the gradient and the Hessian of a given density estimate. Curve definition requires the local smoothness of data density and is based on the concept of subspace local maxima. Tracing of the curve is handled through the leading eigenvector where fixed step updates are used. We also propose an image segmentation algorithm based on the original idea and show the effectiveness of the proposed algorithm on a Brainbow dataset. Lastly, we showed a simple approach to define connectivity in complex topologies, by providing a tree representation for the bifurcating synthetic data.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2011.04.009