Connectivity of projected high dimensional data charts on one-dimensional curves

We propose a principal curve tracing algorithm, which uses the gradient and the Hessian of a given density estimate. Curve definition requires the local smoothness of data density and is based on the concept of subspace local maxima. Tracing of the curve is handled through the leading eigenvector wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 91; H. 10; S. 2404 - 2409
Hauptverfasser: Bas, E., Erdogmus, D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.10.2011
Elsevier
Schlagworte:
ISSN:0165-1684, 1872-7557
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a principal curve tracing algorithm, which uses the gradient and the Hessian of a given density estimate. Curve definition requires the local smoothness of data density and is based on the concept of subspace local maxima. Tracing of the curve is handled through the leading eigenvector where fixed step updates are used. We also propose an image segmentation algorithm based on the original idea and show the effectiveness of the proposed algorithm on a Brainbow dataset. Lastly, we showed a simple approach to define connectivity in complex topologies, by providing a tree representation for the bifurcating synthetic data.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2011.04.009