Robust Low-Thrust Trajectory Optimization Using Convex Programming and a Homotopic Approach

A robust algorithm to solve the low-thrust fuel-optimal trajectory optimization problem for interplanetary spacecraft is developed in this article. The original nonlinear optimal control problem is convexified and transformed into a parameter optimization problem using an arbitrary-order Gauss-Lobat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems Vol. 58; no. 3; pp. 2103 - 2116
Main Authors: Morelli, Andrea Carlo, Hofmann, Christian, Topputo, Francesco
Format: Journal Article
Language:English
Published: New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9251, 1557-9603
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A robust algorithm to solve the low-thrust fuel-optimal trajectory optimization problem for interplanetary spacecraft is developed in this article. The original nonlinear optimal control problem is convexified and transformed into a parameter optimization problem using an arbitrary-order Gauss-Lobatto discretization scheme with nonlinear control interpolation. A homotopic approach that considers the energy-to-fuel smoothing path is combined with an adaptive second-order trust-region mechanism to increase performance. The overall robustness is assessed in several fuel-optimal transfers with poor initial guesses. The results show a superior performance in terms of convergence and computational time compared to standard convex programming approaches in the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2021.3128869