Visual-PSNR measure of image quality

•Objective image quality measure (VPSNR) is developed.•VPSNR has good correlation with MOS for compressed images.•VPSNR can be calculated in the spatial domain.•VPSNR coincides with PSNR on conner cases. Objective assessment of image quality is important in numerous image and video processing applic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visual communication and image representation Vol. 25; no. 5; pp. 874 - 878
Main Author: Tanchenko, Alexander
Format: Journal Article
Language:English
Published: Elsevier Inc 01.07.2014
Subjects:
ISSN:1047-3203, 1095-9076
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Objective image quality measure (VPSNR) is developed.•VPSNR has good correlation with MOS for compressed images.•VPSNR can be calculated in the spatial domain.•VPSNR coincides with PSNR on conner cases. Objective assessment of image quality is important in numerous image and video processing applications. Many objective measures of image quality have been developed for this purpose, of which peak signal-to-noise ratio PSNR is one of the simplest and commonly used. However, it sometimes does not match well with objective mean opinion scores (MOS). This paper presents a novel objective full-reference measure of image quality (VPSNR), which is a modified PSNR measure. It will be shown that VPSNR takes into account some features of the human visual system (HVS). The performance of VPSNR is validated using a data set of four image databases, and in this article it is shown that for images compressed by block-based compression algorithms (like JPEG) the proposed measure in the pixel domain matches well with MOS.
AbstractList Objective assessment of image quality is important in numerous image and video processing applications. Many objective measures of image quality have been developed for this purpose, of which peak signal-to-noise ratio PSNR is one of the simplest and commonly used. However, it sometimes does not match well with objective mean opinion scores (MOS). This paper presents a novel objective full-reference measure of image quality (VPSNR), which is a modified PSNR measure. It will be shown that VPSNR takes into account some features of the human visual system (HVS). The performance of VPSNR is validated using a data set of four image databases, and in this article it is shown that for images compressed by block-based compression algorithms (like JPEG) the proposed measure in the pixel domain matches well with MOS.
•Objective image quality measure (VPSNR) is developed.•VPSNR has good correlation with MOS for compressed images.•VPSNR can be calculated in the spatial domain.•VPSNR coincides with PSNR on conner cases. Objective assessment of image quality is important in numerous image and video processing applications. Many objective measures of image quality have been developed for this purpose, of which peak signal-to-noise ratio PSNR is one of the simplest and commonly used. However, it sometimes does not match well with objective mean opinion scores (MOS). This paper presents a novel objective full-reference measure of image quality (VPSNR), which is a modified PSNR measure. It will be shown that VPSNR takes into account some features of the human visual system (HVS). The performance of VPSNR is validated using a data set of four image databases, and in this article it is shown that for images compressed by block-based compression algorithms (like JPEG) the proposed measure in the pixel domain matches well with MOS.
Author Tanchenko, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  surname: Tanchenko
  fullname: Tanchenko, Alexander
  email: atanchen@synopsys.com
  organization: Synopsys Inc., st. Popova, app. 23.D, 197376 Saint-Petersburg, Russia
BookMark eNqFkD1PwzAQhi1UJErhF7BkYGBJOMd2Eg8MqOJLqgDxtVqOc0aO0qS1k0r996SUiQGmO-ne55XuOSaTtmuRkDMKCQWaXdZJvTHOJylQngBNAIoDMqUgRSwhzya7necxS4EdkeMQagBgkvEpOf9wYdBN_Pz6-BItUYfBY9TZyC31J0br8eT67Qk5tLoJePozZ-T99uZtfh8vnu4e5teL2DCW9XEKaSpzNGNxJkqTYmaLUorMGsttJZELDdwWIMBKVpYiLytNQRdcouWIjM3Ixb535bv1gKFXSxcMNo1usRuCokJQEAUt8jEq91HjuxA8WmVcr3vXtb3XrlEU1M6MqtW3GbUzo4Cq0czIsl_syo__-u0_1NWewtHAxqFXwThsDVbOo-lV1bk_-S_qzH8M
CitedBy_id crossref_primary_10_1109_JSEN_2024_3524657
crossref_primary_10_1016_j_bspc_2025_108474
crossref_primary_10_1109_ACCESS_2020_3040177
crossref_primary_10_1109_ACCESS_2025_3543542
crossref_primary_10_1109_TGRS_2025_3567469
crossref_primary_10_1016_j_jvcir_2015_08_009
crossref_primary_10_1016_j_atres_2025_06_001
crossref_primary_10_1016_j_jvcir_2015_06_002
crossref_primary_10_1016_j_image_2021_116357
crossref_primary_10_1371_journal_pone_0159251
crossref_primary_10_1093_comjnl_bxy047
crossref_primary_10_1016_j_jksuci_2023_101821
crossref_primary_10_3390_rs16214045
crossref_primary_10_1007_s11277_022_09675_1
crossref_primary_10_2478_amcs_2019_0060
crossref_primary_10_1186_s13640_015_0077_2
crossref_primary_10_1109_TIM_2024_3472902
crossref_primary_10_1109_ACCESS_2018_2867253
crossref_primary_10_1088_1361_6501_ae02b4
crossref_primary_10_1007_s12652_025_05011_0
crossref_primary_10_1109_JSEN_2025_3574423
crossref_primary_10_1109_TNB_2021_3064077
crossref_primary_10_1016_j_displa_2025_103198
crossref_primary_10_1016_j_compbiomed_2022_105934
crossref_primary_10_3390_app122412952
crossref_primary_10_1109_ACCESS_2020_2993146
crossref_primary_10_3390_cancers15194715
crossref_primary_10_1109_ACCESS_2022_3178380
crossref_primary_10_1109_ACCESS_2017_2762399
crossref_primary_10_3390_app14145986
crossref_primary_10_1016_j_imavis_2021_104119
crossref_primary_10_1016_j_isprsjprs_2017_02_016
crossref_primary_10_3390_s19102385
crossref_primary_10_1109_TGRS_2022_3228282
crossref_primary_10_1007_s10462_025_11171_4
crossref_primary_10_3390_cancers16030572
crossref_primary_10_32604_cmc_2024_055150
crossref_primary_10_1109_LAWP_2024_3355361
crossref_primary_10_3390_bioengineering11070739
crossref_primary_10_1016_j_knosys_2022_109997
crossref_primary_10_3390_rs15102547
crossref_primary_10_1063_5_0244356
crossref_primary_10_1007_s12065_019_00313_7
crossref_primary_10_1016_j_eja_2025_127811
crossref_primary_10_4018_IJAMC_292497
crossref_primary_10_1007_s11042_019_08465_5
crossref_primary_10_3390_s25154565
crossref_primary_10_1016_j_displa_2015_10_005
crossref_primary_10_3390_drones8090452
crossref_primary_10_3390_jmse12010007
crossref_primary_10_3390_photonics12060568
crossref_primary_10_1109_LWC_2025_3563231
crossref_primary_10_3390_jimaging11050139
crossref_primary_10_3389_fninf_2023_956600
crossref_primary_10_1016_j_jksuci_2023_101698
crossref_primary_10_1049_ipr2_12117
crossref_primary_10_3788_AOS250859
crossref_primary_10_1016_j_ijepes_2023_109607
crossref_primary_10_3390_e26121110
crossref_primary_10_1109_TITS_2023_3268063
crossref_primary_10_3390_s21134589
crossref_primary_10_1155_2016_9576502
crossref_primary_10_1007_s11277_015_3033_7
crossref_primary_10_1080_01431161_2025_2536883
crossref_primary_10_1109_ACCESS_2024_3448450
crossref_primary_10_1109_JSTARS_2024_3525072
crossref_primary_10_3390_agriculture14101797
crossref_primary_10_1016_j_infrared_2024_105671
crossref_primary_10_1109_TGRS_2025_3547419
crossref_primary_10_1109_TCSVT_2024_3520252
crossref_primary_10_1007_s11432_019_2757_1
crossref_primary_10_1016_j_knosys_2025_114262
crossref_primary_10_1109_JPHOT_2022_3158653
crossref_primary_10_1134_S1054661818020190
crossref_primary_10_1007_s00542_018_3840_3
crossref_primary_10_1016_j_jvcir_2024_104163
crossref_primary_10_1109_TGRS_2024_3349479
crossref_primary_10_1186_s40064_016_2371_6
crossref_primary_10_3390_math12050748
crossref_primary_10_3390_s24123794
crossref_primary_10_1038_s41598_024_74179_w
crossref_primary_10_1109_ACCESS_2020_3006359
crossref_primary_10_1109_JSEN_2024_3404950
crossref_primary_10_1016_j_compeleceng_2024_109787
crossref_primary_10_1007_s11760_018_1283_z
crossref_primary_10_3390_s24248217
crossref_primary_10_1007_s00521_021_06709_w
crossref_primary_10_1109_JSTSP_2019_2953950
crossref_primary_10_1515_nanoph_2019_0475
crossref_primary_10_3390_app13085025
crossref_primary_10_1007_s11042_023_17790_9
crossref_primary_10_7498_aps_73_20241123
crossref_primary_10_1002_ima_22711
crossref_primary_10_3390_s25144296
crossref_primary_10_1016_j_jvcir_2015_01_007
crossref_primary_10_3390_bioengineering12090997
crossref_primary_10_1007_s11042_024_20016_1
crossref_primary_10_1016_j_scitotenv_2024_174329
crossref_primary_10_1109_TGRS_2021_3101491
crossref_primary_10_3390_app14167029
crossref_primary_10_1016_j_neunet_2024_106281
crossref_primary_10_1007_s13042_023_01990_8
crossref_primary_10_1007_s11042_021_11385_y
crossref_primary_10_1007_s11760_019_01499_0
crossref_primary_10_1109_MMUL_2024_3354998
crossref_primary_10_1109_TCSVT_2022_3190273
crossref_primary_10_3934_era_2025251
crossref_primary_10_1016_j_compbiomed_2025_110517
crossref_primary_10_1088_1402_4896_adb45d
Cites_doi 10.1007/10719724_16
10.1109/ICIP.1994.413502
10.1109/TIP.2005.859378
10.1109/MSP.2008.930649
10.1109/TIP.2003.819861
10.1109/TIP.2006.881959
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jvcir.2014.01.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1095-9076
EndPage 878
ExternalDocumentID 10_1016_j_jvcir_2014_01_008
S1047320314000091
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMHC
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LX9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
YQT
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c336t-202297ec93465bc2e6f8b956fcf4fd9e45a04f8050f93bb57bda10a849ef4ee33
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000336891200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1047-3203
IngestDate Thu Oct 02 15:24:47 EDT 2025
Sat Nov 29 04:56:34 EST 2025
Tue Nov 18 21:55:42 EST 2025
Fri Feb 23 02:24:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Image quality
Objective measure of image quality
Peak signal-to-noise ratio
Mean opinion score
Image database
Human visual system
Block-based compression algorithm
Subjective image quality
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-202297ec93465bc2e6f8b956fcf4fd9e45a04f8050f93bb57bda10a849ef4ee33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1551058187
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1551058187
crossref_citationtrail_10_1016_j_jvcir_2014_01_008
crossref_primary_10_1016_j_jvcir_2014_01_008
elsevier_sciencedirect_doi_10_1016_j_jvcir_2014_01_008
PublicationCentury 2000
PublicationDate July 2014
2014-07-00
20140701
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationTitle Journal of visual communication and image representation
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Z. Wang, E. Simoncelli, A. Bovik, Multi-scale structural similarity for image quality assessment, in: IEEE Asilomar Conference on Signals, Systems and Computers, Invited Paper, Nov. 2003.
Sheikh, Bovik (b0030) 2006; 15
Yuukou Horita, Keiji Shibata, Yoshikazu Kawayoke, Toyama image database, Available online at
Final report from the video quality experts group on the validation of objective models of video quality assessment, Available online at
Wang, Li (b0025) 2011; 20
N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, F. Battisti, Tampere image database 2008 TID2008, version 1.0, Available online at
Checkmark benchmark, 2001, Available online at
Patrick Le Callet, Florent Autrusseau, Subjective quality assessment IRCCyN/IVC database, Available online at
.
Wang, Bovik, Sheikh, Simoncelli (b0015) 2004; 13
M. Gaubatz, S.S. Hemami, MeTriX MuX visual quality assessment package, Available online at
Teo, Heeger (b0035) 1994; 2
Voloshynovskiy, Herrigel, Baumgaertner, Pu (b0040) 2000; 1768
Wang, Bovik (b0010) 2009; 26
E.C. Larson, D.M. Chandler, The CSIQ image database, Available online at
USC-SIPI image database, Available online at
Sheikh, Sabir, Bovik (b0095) 2006; 15
10.1016/j.jvcir.2014.01.008_b0045
10.1016/j.jvcir.2014.01.008_b0055
10.1016/j.jvcir.2014.01.008_b0065
Sheikh (10.1016/j.jvcir.2014.01.008_b0095) 2006; 15
10.1016/j.jvcir.2014.01.008_b0020
Voloshynovskiy (10.1016/j.jvcir.2014.01.008_b0040) 2000; 1768
10.1016/j.jvcir.2014.01.008_b0075
10.1016/j.jvcir.2014.01.008_b0060
Wang (10.1016/j.jvcir.2014.01.008_b0025) 2011; 20
10.1016/j.jvcir.2014.01.008_b0070
10.1016/j.jvcir.2014.01.008_b0080
Teo (10.1016/j.jvcir.2014.01.008_b0035) 1994; 2
Wang (10.1016/j.jvcir.2014.01.008_b0010) 2009; 26
Sheikh (10.1016/j.jvcir.2014.01.008_b0030) 2006; 15
10.1016/j.jvcir.2014.01.008_b0005
Wang (10.1016/j.jvcir.2014.01.008_b0015) 2004; 13
References_xml – reference: M. Gaubatz, S.S. Hemami, MeTriX MuX visual quality assessment package, Available online at:
– reference: Z. Wang, E. Simoncelli, A. Bovik, Multi-scale structural similarity for image quality assessment, in: IEEE Asilomar Conference on Signals, Systems and Computers, Invited Paper, Nov. 2003.
– reference: E.C. Larson, D.M. Chandler, The CSIQ image database, Available online at:
– volume: 20
  year: 2011
  ident: b0025
  article-title: Information content weighting for perceptual image quality assessment
  publication-title: IEEE Trans. Image Process.
– volume: 1768
  start-page: 211
  year: 2000
  end-page: 236
  ident: b0040
  article-title: A stochastic approach to content adaptive digital image watermarking
  publication-title: Lect. Notes Comput. Sci. Inform. Hiding
– reference: Checkmark benchmark, 2001, Available online at:
– volume: 2
  start-page: 982
  year: 1994
  end-page: 986
  ident: b0035
  article-title: Perceptual image distortion
  publication-title: IEEE Int. Conf. Image Process.
– reference: .
– reference: USC-SIPI image database, Available online at:
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b0015
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– reference: Patrick Le Callet, Florent Autrusseau, Subjective quality assessment IRCCyN/IVC database, Available online at:
– reference: Final report from the video quality experts group on the validation of objective models of video quality assessment, Available online at:
– volume: 15
  start-page: 3411
  year: 2006
  end-page: 3452
  ident: b0095
  article-title: A statistical evaluation of recent full reference image quality assessment algorithms
  publication-title: IEEE Trans. Image Process.
– reference: Yuukou Horita, Keiji Shibata, Yoshikazu Kawayoke, Toyama image database, Available online at:
– volume: 15
  start-page: 430
  year: 2006
  end-page: 444
  ident: b0030
  article-title: Image information and visual quality
  publication-title: IEEE Trans. Image Process.
– reference: N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, F. Battisti, Tampere image database 2008 TID2008, version 1.0, Available online at:
– volume: 26
  start-page: 98
  year: 2009
  end-page: 117
  ident: b0010
  article-title: Mean squared error: love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
– volume: 1768
  start-page: 211
  year: 2000
  ident: 10.1016/j.jvcir.2014.01.008_b0040
  article-title: A stochastic approach to content adaptive digital image watermarking
  publication-title: Lect. Notes Comput. Sci. Inform. Hiding
  doi: 10.1007/10719724_16
– ident: 10.1016/j.jvcir.2014.01.008_b0045
– ident: 10.1016/j.jvcir.2014.01.008_b0070
– ident: 10.1016/j.jvcir.2014.01.008_b0020
– volume: 2
  start-page: 982
  year: 1994
  ident: 10.1016/j.jvcir.2014.01.008_b0035
  article-title: Perceptual image distortion
  publication-title: IEEE Int. Conf. Image Process.
  doi: 10.1109/ICIP.1994.413502
– ident: 10.1016/j.jvcir.2014.01.008_b0065
– ident: 10.1016/j.jvcir.2014.01.008_b0005
– ident: 10.1016/j.jvcir.2014.01.008_b0080
– volume: 20
  issue: 5
  year: 2011
  ident: 10.1016/j.jvcir.2014.01.008_b0025
  article-title: Information content weighting for perceptual image quality assessment
  publication-title: IEEE Trans. Image Process.
– ident: 10.1016/j.jvcir.2014.01.008_b0060
– volume: 15
  start-page: 430
  issue: 2
  year: 2006
  ident: 10.1016/j.jvcir.2014.01.008_b0030
  article-title: Image information and visual quality
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.859378
– volume: 26
  start-page: 98
  issue: 1
  year: 2009
  ident: 10.1016/j.jvcir.2014.01.008_b0010
  article-title: Mean squared error: love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.930649
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.jvcir.2014.01.008_b0015
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 15
  start-page: 3411
  issue: 11
  year: 2006
  ident: 10.1016/j.jvcir.2014.01.008_b0095
  article-title: A statistical evaluation of recent full reference image quality assessment algorithms
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881959
– ident: 10.1016/j.jvcir.2014.01.008_b0075
– ident: 10.1016/j.jvcir.2014.01.008_b0055
SSID ssj0003934
Score 2.443378
Snippet •Objective image quality measure (VPSNR) is developed.•VPSNR has good correlation with MOS for compressed images.•VPSNR can be calculated in the spatial...
Objective assessment of image quality is important in numerous image and video processing applications. Many objective measures of image quality have been...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 874
SubjectTerms Algorithms
Assessments
Block-based compression algorithm
Human visual system
Image compression
Image database
Image quality
Mean opinion score
Metal oxide semiconductors
Objective measure of image quality
Peak signal-to-noise ratio
Subjective image quality
Video
Visual
Title Visual-PSNR measure of image quality
URI https://dx.doi.org/10.1016/j.jvcir.2014.01.008
https://www.proquest.com/docview/1551058187
Volume 25
WOSCitedRecordID wos000336891200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003934
  issn: 1047-3203
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbQxgM8IBggxgAFaeIFgpzYSezHCQ0BQtUEY-qb5Ti2aLem09JW-_M5_0rTARV74CWKLNtK8l3uzvZ9dwgdKpVTSRRJtZY6pRLzVDJYrDS8UrwB_0A71vvZ12o0YuMxPwkl4TtXTqBqW3Z9zS__K9TQBmBb6uwt4O4nhQa4B9DhCrDD9Z-AP5t0S3mRnnwffXs78zuALi_EzEbneA7lxlHuwCVduaE2zHxNGvGnC26wS4AZyUrrAF6Qm5-6Pd_kywx3EzLaR55GBWgzN5Ack6GG9NTkIAnFQN0xX2Gnt5zsj0rZ7w9M309XamJTsGbUZUrFbG2D4rn7DdPUBwzGWLSpcJMIO4nAmXA87928KjhotN2jz8fjL70dJtzHFMQ3ijmnXHTfb8_yN7_khoV2bsfpQ_QggJMceZwfoTu63UP3B1kk99BB6DTpZsmbZIPx0z1GhwN5SII8JHOTOEiTIA9P0I-Px6cfPqWhNEaqCCkXIPB5ziut4BXLola5Lg2rYalrlKGm4ZoWElPDcIENJ3VdVHUjMywZ5dpQrQl5inbaeaufoaQhmTGgio0xNWWy4qxsYM2Oa9mAc5OX-yiPH0aokDfeli-5EFtA2Ufv-kGXPm3K9u5l_OIieH7eoxMgQ9sHvo74CNCL9rBLtnq-7IRdCuAC3NHq-e2e5QDdW_8YL9DO4mqpX6K7arWYdFevgpD9AkyQh0M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual-PSNR+measure+of+image+quality&rft.jtitle=Journal+of+visual+communication+and+image+representation&rft.au=Tanchenko%2C+Alexander&rft.date=2014-07-01&rft.issn=1047-3203&rft.volume=25&rft.issue=5&rft.spage=874&rft.epage=878&rft_id=info:doi/10.1016%2Fj.jvcir.2014.01.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jvcir_2014_01_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3203&client=summon