Universality in Short Intervals of the Riemann Zeta-Function Twisted by Non-Trivial Zeros

Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 8; číslo 11; s. 1936
Hlavní autori: Laurinčikas, Antanas, Šiaučiūnas, Darius
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI AG 01.11.2020
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any non-vanishing analytic function defined in the strip {s∈C:1/2<Res<1} with accuracy ε>0 has a positive lower density in [N,N+M] as N→∞. Moreover, this set has a positive density for all but at most countably ε>0. The above approximation property remains valid for certain compositions F(ζ(s)).
ISSN:2227-7390
2227-7390
DOI:10.3390/math8111936