Universality in Short Intervals of the Riemann Zeta-Function Twisted by Non-Trivial Zeros
Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any...
Saved in:
| Published in: | Mathematics (Basel) Vol. 8; no. 11; p. 1936 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
MDPI AG
01.11.2020
|
| Subjects: | |
| ISSN: | 2227-7390, 2227-7390 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any non-vanishing analytic function defined in the strip {s∈C:1/2<Res<1} with accuracy ε>0 has a positive lower density in [N,N+M] as N→∞. Moreover, this set has a positive density for all but at most countably ε>0. The above approximation property remains valid for certain compositions F(ζ(s)). |
|---|---|
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math8111936 |