Universality in Short Intervals of the Riemann Zeta-Function Twisted by Non-Trivial Zeros

Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) Jg. 8; H. 11; S. 1936
Hauptverfasser: Laurinčikas, Antanas, Šiaučiūnas, Darius
Format: Journal Article
Sprache:Englisch
Veröffentlicht: MDPI AG 01.11.2020
Schlagworte:
ISSN:2227-7390, 2227-7390
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any non-vanishing analytic function defined in the strip {s∈C:1/2<Res<1} with accuracy ε>0 has a positive lower density in [N,N+M] as N→∞. Moreover, this set has a positive density for all but at most countably ε>0. The above approximation property remains valid for certain compositions F(ζ(s)).
ISSN:2227-7390
2227-7390
DOI:10.3390/math8111936