Universality in Short Intervals of the Riemann Zeta-Function Twisted by Non-Trivial Zeros

Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 8; no. 11; p. 1936
Main Authors: Laurinčikas, Antanas, Šiaučiūnas, Darius
Format: Journal Article
Language:English
Published: MDPI AG 01.11.2020
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any non-vanishing analytic function defined in the strip {s∈C:1/2<Res<1} with accuracy ε>0 has a positive lower density in [N,N+M] as N→∞. Moreover, this set has a positive density for all but at most countably ε>0. The above approximation property remains valid for certain compositions F(ζ(s)).
AbstractList Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ ( s ) . Using a certain estimate on the pair correlation of the sequence { γk } in the intervals [N,N+M] with N1/2+ε⩽M⩽N , we prove that the set of shifts ζ ( s+ihγk ) , h>0 , approximating any non-vanishing analytic function defined in the strip { s∈ C :1/2<Res<1 } with accuracy ε>0 has a positive lower density in [N,N+M] as N→∞ . Moreover, this set has a positive density for all but at most countably ε>0 . The above approximation property remains valid for certain compositions F ( ζ ( s ) ) .
Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation of the sequence {γk} in the intervals [N,N+M] with N1/2+ε⩽M⩽N, we prove that the set of shifts ζ(s+ihγk), h>0, approximating any non-vanishing analytic function defined in the strip {s∈C:1/2<Res<1} with accuracy ε>0 has a positive lower density in [N,N+M] as N→∞. Moreover, this set has a positive density for all but at most countably ε>0. The above approximation property remains valid for certain compositions F(ζ(s)).
Author Laurinčikas, Antanas
Šiaučiūnas, Darius
Author_xml – sequence: 1
  givenname: Antanas
  orcidid: 0000-0002-7671-0282
  surname: Laurinčikas
  fullname: Laurinčikas, Antanas
– sequence: 2
  givenname: Darius
  orcidid: 0000-0002-9248-8917
  surname: Šiaučiūnas
  fullname: Šiaučiūnas, Darius
BookMark eNptkEtLAzEUhYNUsNau_APZy2ge80iWUqwWioK2C90MdzKJTZkmkomV_ntTKyLi3dzL4dwPzjlFA-edRuickkvOJbnaQFwJSqnk5REaMsaqrEr64Nd9gsZ9vyZpJOUil0P0vHR2q0MPnY07bB1-WvkQ8cxFHbbQ9dgbHFcaP1q9Aefwi46QTd-ditY7vPiwfdQtbnb43rtsEezWQpdMwfdn6NgkgB5_7xFaTm8Wk7ts_nA7m1zPM8V5GTNqNEBpisYYw5k0RU6FaY0ktJEplsxZrtuKsdwoSUqhmIE8l5IrWRJWGeAjNDtwWw_r-i3YDYRd7cHWX4IPrzWEaFWn64qJkgnVGE1F3rIWZKOLlmoidCFlRRLr4sBSKUAftPnhUVLvS65_lZzc9I9b2Qj7YmIA2_378wmZBYJe
CitedBy_id crossref_primary_10_1007_s10986_021_09533_w
crossref_primary_10_1134_S0037446622020069
Cites_doi 10.1007/s11139-017-9886-5
10.1515/crll.1914.144.249
10.3846/mma.2020.10450
10.1007/978-94-017-2091-5
10.1016/j.jnt.2019.04.006
10.1515/ms-2017-0141
10.1007/s00013-016-0998-8
10.4064/aa8583-5-2017
10.1007/BFb0060851
10.1007/BF01224983
10.1515/9783110886146
10.1090/pspum/024
10.1070/SM9194
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/math8111936
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_728628cbfe184d2da9be5d1e08e59970
10_3390_math8111936
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
ID FETCH-LOGICAL-c336t-1feaa6f5bfff329f5418fdf901b93399424ed7224fc9068c2fa44993c96027fa3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594034200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:35:12 EDT 2025
Sat Nov 29 07:16:09 EST 2025
Tue Nov 18 21:57:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-1feaa6f5bfff329f5418fdf901b93399424ed7224fc9068c2fa44993c96027fa3
ORCID 0000-0002-9248-8917
0000-0002-7671-0282
OpenAccessLink https://doaj.org/article/728628cbfe184d2da9be5d1e08e59970
ParticipantIDs doaj_primary_oai_doaj_org_article_728628cbfe184d2da9be5d1e08e59970
crossref_primary_10_3390_math8111936
crossref_citationtrail_10_3390_math8111936
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Mathematics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_10) 2018; 45
(ref_12) 2017; 181
ref_13
ref_23
ref_22
(ref_15) 2019; 210
ref_21
ref_20
(ref_11) 2018; 68
(ref_9) 2017; 108
ref_3
ref_19
ref_18
ref_17
Voronin (ref_2) 1975; 9
Reich (ref_7) 1980; 34
(ref_16) 2019; 204
(ref_8) 2019; 30
Bohr (ref_1) 1914; 144
ref_5
ref_4
(ref_14) 2020; 25
ref_6
References_xml – ident: ref_6
– volume: 45
  start-page: 181
  year: 2018
  ident: ref_10
  article-title: Joint universality for dependent L-functions
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-017-9886-5
– volume: 144
  start-page: 249
  year: 1914
  ident: ref_1
  article-title: Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1914.144.249
– ident: ref_4
– ident: ref_3
– volume: 25
  start-page: 71
  year: 2020
  ident: ref_14
  article-title: Joint discrete approximation of a pair of analytic functions by periodic zeta-functions
  publication-title: Math. Modell. Anal.
  doi: 10.3846/mma.2020.10450
– ident: ref_5
  doi: 10.1007/978-94-017-2091-5
– volume: 204
  start-page: 279
  year: 2019
  ident: ref_16
  article-title: Universality of the Riemann zeta-function in short intervals
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2019.04.006
– volume: 68
  start-page: 741
  year: 2018
  ident: ref_11
  article-title: The Riemann hypothesis and universality of the Riemann zeta-function
  publication-title: Math. Slovaca
  doi: 10.1515/ms-2017-0141
– volume: 108
  start-page: 271
  year: 2017
  ident: ref_9
  article-title: The discrete universality of the Riemann zeta-function with respect to uniformly distributed shifts
  publication-title: Arch. Math.
  doi: 10.1007/s00013-016-0998-8
– volume: 181
  start-page: 127
  year: 2017
  ident: ref_12
  article-title: Zeros of the Riemann zeta-function and its universality
  publication-title: Acta Arith.
  doi: 10.4064/aa8583-5-2017
– ident: ref_22
  doi: 10.1007/BFb0060851
– volume: 34
  start-page: 440
  year: 1980
  ident: ref_7
  article-title: Werteverteilung von Zetafunktionen
  publication-title: Arch. Math.
  doi: 10.1007/BF01224983
– volume: 9
  start-page: 443
  year: 1975
  ident: ref_2
  article-title: Theorem on the “universality” of the Riemann zeta-function
  publication-title: Izv. Ross. Akad. Nauk.
– ident: ref_17
– ident: ref_18
  doi: 10.1515/9783110886146
– ident: ref_19
– ident: ref_13
  doi: 10.1090/pspum/024
– volume: 210
  start-page: 1753
  year: 2019
  ident: ref_15
  article-title: Universality of Dirichlet L-functions and non-trivial zeros of the Riemann zeta-function
  publication-title: Sb. Math.
  doi: 10.1070/SM9194
– ident: ref_23
– ident: ref_21
– ident: ref_20
– volume: 30
  start-page: 103
  year: 2019
  ident: ref_8
  article-title: Discrete universality of the Riemann zeta-function and uniform distribution modulo 1
  publication-title: Petersb. Math. J.
SSID ssj0000913849
Score 2.138008
Snippet Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ(s). Using a certain estimate on the pair correlation...
Let 0<γ1<γ2<⋯⩽γk⩽⋯ be the sequence of imaginary parts of non-trivial zeros of the Riemann zeta-function ζ ( s ) . Using a certain estimate on the pair...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1936
SubjectTerms Montgomery pair correlation conjecture
non-trivial zeros
Riemann zeta-function
universality
Title Universality in Short Intervals of the Riemann Zeta-Function Twisted by Non-Trivial Zeros
URI https://doaj.org/article/728628cbfe184d2da9be5d1e08e59970
Volume 8
WOSCitedRecordID wos000594034200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA0iHvQgfuI3OXgSQrtJukmOKhYvFtEK1cuSZDNYkK20teLF3-4ku9YeBC9e9rDMLtk3s5l5IXlDyGnUpPLK5SxzXjLJXckM54oFEDhuab02LjWbUL2eHgzM7UKrr7gnrJYHroFrKY41t_YOAnKRkpfWuNAps9DWoWOMSmy9rcwCmUpzsMmElqY-kCeQ17ew_nvW-GObJMb8k4IWlPpTSulukPWmFqTn9Rg2yVKotsjazVxIdbJNHpuNE6lapsOK3j9jvUzTOh7GyISOgKI5vRviI1VFn8LUsi7mqog37b9HJ5bUfdDeqGL98XCG4YZGOK4d8tC96l9es6YbAvNC5FOWQbA2h44DAMENdGSmoQTM587gFxrJZSgVZmTwpp1rz8FKpDPCI0fhCqzYJcvVqAp7hFpvlDUgMq-dBKWdFhorJwVc5oATwD45-wao8I1UeOxY8VIgZYhoFgto7pPTufFrrZDxu9lFRHpuEmWt0w10dtE4u_jL2Qf_8ZJDssojaU4HCo_I8nT8Fo7Jip9Nh5PxSYojvN58Xn0Bjd_P4g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universality+in+Short+Intervals+of+the+Riemann+Zeta-Function+Twisted+by+Non-Trivial+Zeros&rft.jtitle=Mathematics+%28Basel%29&rft.au=Laurin%C4%8Dikas%2C+Antanas&rft.au=%C5%A0iau%C4%8Di%C5%ABnas%2C+Darius&rft.date=2020-11-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=8&rft.issue=11&rft.spage=1936&rft_id=info:doi/10.3390%2Fmath8111936&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math8111936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon