Sparse direct adaptive equalization based on proportionate recursive least squares algorithm for multiple-input multiple-output underwater acoustic communications

In this paper, the sparse direct adaptive equalization based on the recently developed proportionate recursive least squares (PRLS) adaptive filtering algorithm is investigated for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. First, performance analysis is made for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America Jg. 148; H. 4; S. 2280
Hauptverfasser: Qin, Zhen, Tao, Jun, Han, Xiao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.10.2020
ISSN:1520-8524, 1520-8524
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, the sparse direct adaptive equalization based on the recently developed proportionate recursive least squares (PRLS) adaptive filtering algorithm is investigated for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. First, performance analysis is made for the PRLS, and simulation results show its gain over a standard recursive least squares algorithm under sparse systems. The fast implementation of the PRLS, named the proportionate stable fast transversal filters (PSFTF), is revisited to implement a direct adaptive decision-feedback equalizer which outperforms the existing PSFTF direct adaptive linear equalizer. The PSFTF direct adaptive equalizers (DAEs) are then compared with the selective zero-attracting stable fast transversal filter DAEs (SZA-SFTF-DAEs) enabled by the SZA-SFTF adaptive filtering algorithm. The SZA-SFTF algorithm is designed with the zero-attracting sparsity-promoting principle, which is in parallel to the proportionate updating principle used to design the PSFTF algorithm. Experimental results of an at-sea MIMO UWA communication trial show that PSFTF-DAEs outperform the SZA-SFTF-DAEs.In this paper, the sparse direct adaptive equalization based on the recently developed proportionate recursive least squares (PRLS) adaptive filtering algorithm is investigated for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. First, performance analysis is made for the PRLS, and simulation results show its gain over a standard recursive least squares algorithm under sparse systems. The fast implementation of the PRLS, named the proportionate stable fast transversal filters (PSFTF), is revisited to implement a direct adaptive decision-feedback equalizer which outperforms the existing PSFTF direct adaptive linear equalizer. The PSFTF direct adaptive equalizers (DAEs) are then compared with the selective zero-attracting stable fast transversal filter DAEs (SZA-SFTF-DAEs) enabled by the SZA-SFTF adaptive filtering algorithm. The SZA-SFTF algorithm is designed with the zero-attracting sparsity-promoting principle, which is in parallel to the proportionate updating principle used to design the PSFTF algorithm. Experimental results of an at-sea MIMO UWA communication trial show that PSFTF-DAEs outperform the SZA-SFTF-DAEs.
AbstractList In this paper, the sparse direct adaptive equalization based on the recently developed proportionate recursive least squares (PRLS) adaptive filtering algorithm is investigated for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. First, performance analysis is made for the PRLS, and simulation results show its gain over a standard recursive least squares algorithm under sparse systems. The fast implementation of the PRLS, named the proportionate stable fast transversal filters (PSFTF), is revisited to implement a direct adaptive decision-feedback equalizer which outperforms the existing PSFTF direct adaptive linear equalizer. The PSFTF direct adaptive equalizers (DAEs) are then compared with the selective zero-attracting stable fast transversal filter DAEs (SZA-SFTF-DAEs) enabled by the SZA-SFTF adaptive filtering algorithm. The SZA-SFTF algorithm is designed with the zero-attracting sparsity-promoting principle, which is in parallel to the proportionate updating principle used to design the PSFTF algorithm. Experimental results of an at-sea MIMO UWA communication trial show that PSFTF-DAEs outperform the SZA-SFTF-DAEs.In this paper, the sparse direct adaptive equalization based on the recently developed proportionate recursive least squares (PRLS) adaptive filtering algorithm is investigated for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. First, performance analysis is made for the PRLS, and simulation results show its gain over a standard recursive least squares algorithm under sparse systems. The fast implementation of the PRLS, named the proportionate stable fast transversal filters (PSFTF), is revisited to implement a direct adaptive decision-feedback equalizer which outperforms the existing PSFTF direct adaptive linear equalizer. The PSFTF direct adaptive equalizers (DAEs) are then compared with the selective zero-attracting stable fast transversal filter DAEs (SZA-SFTF-DAEs) enabled by the SZA-SFTF adaptive filtering algorithm. The SZA-SFTF algorithm is designed with the zero-attracting sparsity-promoting principle, which is in parallel to the proportionate updating principle used to design the PSFTF algorithm. Experimental results of an at-sea MIMO UWA communication trial show that PSFTF-DAEs outperform the SZA-SFTF-DAEs.
Author Han, Xiao
Tao, Jun
Qin, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Qin
  fullname: Qin, Zhen
– sequence: 2
  givenname: Jun
  surname: Tao
  fullname: Tao, Jun
– sequence: 3
  givenname: Xiao
  surname: Han
  fullname: Han, Xiao
BookMark eNpNT8tOwzAQtFCRaAsXvsBHLoF4G8fxEVW8pEocgHPlOBswcuLUD5D4HL4UF5DgNDOrmdndBZmNbkRCTll5zhiwi4xlWQKI-oDMGYeyaDhUs3_8iCxCeM0m3qzknHw-TMoHpJ3xqCNVnZqieUOKu6Ss-VDRuJG2KmBHM5m8m5zfz1REmhPJh73bogqRhpzxGKiyz86b-DLQ3nk6JBvNZLEw45Tin3Qp7nUaO_Tvuc5TpV0K0Wiq3TCk0ejv7eGYHPbKBjz5xSV5ur56XN8Wm_ubu_XlptCrVR0L1regmeaca-i1aHtkWEkpRSfrVsoSG8GlEn0FuuxED1BDK7XUrKtRtJWGJTn76c1f7hKGuB1M0GitGjEftoWKC2h4UzP4An7Uda0
CitedBy_id crossref_primary_10_1121_10_0003494
crossref_primary_10_1121_10_0010370
crossref_primary_10_1007_s11804_024_00387_5
crossref_primary_10_1016_j_dsp_2023_104073
crossref_primary_10_1016_j_apacoust_2022_108869
crossref_primary_10_1109_TVT_2024_3448197
crossref_primary_10_4218_etrij_2022_0036
crossref_primary_10_3390_app131911050
crossref_primary_10_1016_j_dsp_2021_103366
ContentType Journal Article
DBID 7X8
DOI 10.1121/10.0002276
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
GroupedDBID ---
--Z
-~X
.DC
123
29L
4.4
5-Q
5RE
5VS
7X8
85S
AAAAW
AAGWI
AAPUP
AAYIH
ABDNZ
ABJGX
ABJNI
ABNAN
ABPPZ
ABZEH
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ADCTM
ADMLS
AEGXH
AENEX
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHSDT
AIAGR
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CS3
D0L
DU5
EBS
F5P
H~9
M71
M73
P2P
RAZ
RIP
RNS
RQS
SC5
SJN
TN5
TWZ
UHB
UPT
UQL
WH7
XSW
YQT
~02
ID FETCH-LOGICAL-c336t-1fb2c1c555c2fc7bfe1e49997d96b990e8759a7f42c0d7f2262b9c9c1d6e7b4c2
IEDL.DBID 7X8
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000586465200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-8524
IngestDate Fri Sep 05 06:24:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-1fb2c1c555c2fc7bfe1e49997d96b990e8759a7f42c0d7f2262b9c9c1d6e7b4c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2457285861
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2457285861
PublicationCentury 2000
PublicationDate 20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201001
  day: 01
PublicationDecade 2020
PublicationTitle The Journal of the Acoustical Society of America
PublicationYear 2020
SSID ssj0005839
Score 2.3902204
Snippet In this paper, the sparse direct adaptive equalization based on the recently developed proportionate recursive least squares (PRLS) adaptive filtering...
SourceID proquest
SourceType Aggregation Database
StartPage 2280
Title Sparse direct adaptive equalization based on proportionate recursive least squares algorithm for multiple-input multiple-output underwater acoustic communications
URI https://www.proquest.com/docview/2457285861
Volume 148
WOSCitedRecordID wos000586465200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qFHzxLt6J4GvYmiVN-yQiDh9kCF7Y20jSRAezq22n_8df6jlZxwRfBN8aaEpITs8t3zkfIReJyMAsCsV8ojsMGyoxo03KsHe69FxbHeornu9Uv58MBul9k3CrGljlXCcGRZ1NLObI21xIxROZxNFl8c6QNQpvVxsKjWXS6oIrg5AuNVh0C5dJYBIDE9VhieSiaU8a8agdEF3YPi_-pYSDZelt_ndNW2Sj8Snp1UwItsmSy3fIWsB22mqXfD0UEL06OrNeVGe6QB1HXSionJVhUrRmGYWHAmkTypAhrB0tMR2PCHc6RpIfWsEcCNCpHr_AQurXNwpOL52jEtkoL6b1YjiZ1jjGOrXyEz5XUtC_gT6M2p-FKdUeeerdPF7fsoaagdluN65Z5A23kZVSWu6tMt5FDmMnlaWxAQPn4KxTrbzgtpMpDz4eN6lNbZTFThlh-T5ZySe5OyBUWuENnF4Mvp9wiTc-jrTKOtKk2oE7e0jO55s_BNHH-wydO1jscLH9R39455isc4yVAxDvhLQ8_N7ulKzaj3pUlWdBcr4B8RrUFQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+direct+adaptive+equalization+based+on+proportionate+recursive+least+squares+algorithm+for+multiple-input+multiple-output+underwater+acoustic+communications&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Qin%2C+Zhen&rft.au=Tao%2C+Jun&rft.au=Han%2C+Xiao&rft.date=2020-10-01&rft.issn=1520-8524&rft.eissn=1520-8524&rft.volume=148&rft.issue=4&rft.spage=2280&rft_id=info:doi/10.1121%2F10.0002276&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-8524&client=summon