On the orbit of invariant subspaces of linear operators in finite-dimensional spaces (new proof of a Halmos's result)

P.R. Halmos proved that for a linear operator A over a finite-dimensional complex vector space E, every A-invariant subspace of E is the range of a commutant of A. His proof was based on a generalization of the concept of eigenvector. In this note, we give an invariant proof of this Halmos's th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 329; H. 1; S. 171 - 174
1. Verfasser: Faouzi, Abdelkhalek
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 15.05.2001
Elsevier Science
Schlagworte:
ISSN:0024-3795, 1873-1856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:P.R. Halmos proved that for a linear operator A over a finite-dimensional complex vector space E, every A-invariant subspace of E is the range of a commutant of A. His proof was based on a generalization of the concept of eigenvector. In this note, we give an invariant proof of this Halmos's theorem.
ISSN:0024-3795
1873-1856
DOI:10.1016/S0024-3795(01)00239-7