On the orbit of invariant subspaces of linear operators in finite-dimensional spaces (new proof of a Halmos's result)

P.R. Halmos proved that for a linear operator A over a finite-dimensional complex vector space E, every A-invariant subspace of E is the range of a commutant of A. His proof was based on a generalization of the concept of eigenvector. In this note, we give an invariant proof of this Halmos's th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 329; H. 1; S. 171 - 174
1. Verfasser: Faouzi, Abdelkhalek
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 15.05.2001
Elsevier Science
Schlagworte:
ISSN:0024-3795, 1873-1856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract P.R. Halmos proved that for a linear operator A over a finite-dimensional complex vector space E, every A-invariant subspace of E is the range of a commutant of A. His proof was based on a generalization of the concept of eigenvector. In this note, we give an invariant proof of this Halmos's theorem.
AbstractList P.R. Halmos proved that for a linear operator A over a finite-dimensional complex vector space E, every A-invariant subspace of E is the range of a commutant of A. His proof was based on a generalization of the concept of eigenvector. In this note, we give an invariant proof of this Halmos's theorem.
Author Faouzi, Abdelkhalek
Author_xml – sequence: 1
  givenname: Abdelkhalek
  surname: Faouzi
  fullname: Faouzi, Abdelkhalek
  email: faouzi@ucd.ac.ma
  organization: Département de Mathématiques et Informatique, Faculté des Sciences, Université Chouaı̈b Doukkali, B.P. 20, 24000 El Jadida, Morocco
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5669720$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQQIMoWKs_QchBsD2sTnab3S4eRMQvEDyo5zCbTjCyTZYkrfjvTa148CIEhgzvzeEdsF3nHTF2LOBMgKjPnwHKWVE1rZyAmOZP1RbNDhuJeVMVYi7rXTb6RfbZQYzvADBroByx1ZPj6Y24D51N3Btu3RqDRZd4XHVxQE1xs-6tIwzcDxQw-RAzx411NlGxsEty0XqHPf8RJo4--BB8FvNDfo_90sfTyAPFVZ-mh2zPYB_p6GeO2evtzcv1ffH4dPdwffVY6KqqUyG6RrTCAM66mamhI0Et1bKVRHOTF4YAUc4Bu5YMtFpIs6Cy0qKUUGtjqjE72d4dMGrsTUCnbVRDsEsMn0rWdduUkDG5xXTwMQYyv4QAtUmsvhOrTT8FQn0nVk32Lv542iZMOUUKaPt_7cutTbnA2lJQUVtymhY2kE5q4e0_F74A6RqZag
CODEN LAAPAW
CitedBy_id crossref_primary_10_1016_j_laa_2019_08_014
crossref_primary_10_1016_j_laa_2010_07_033
Cites_doi 10.1016/0024-3795(90)90119-W
10.1016/0024-3795(72)90010-9
10.1016/0024-3795(91)90217-K
10.1016/0024-3795(71)90025-5
ContentType Journal Article
Copyright 2001 Elsevier Science Inc.
Copyright_xml – notice: 2001 Elsevier Science Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/S0024-3795(01)00239-7
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1873-1856
EndPage 174
ExternalDocumentID 5669720
10_1016_S0024_3795_01_00239_7
S0024379501002397
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c336t-1b7191f0a4b4f60be1e9e6595ee8ff60fe0aa580ab9ef09c15fde23c12506cff3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000168234800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0024-3795
IngestDate Mon Jul 21 09:16:57 EDT 2025
Sat Nov 29 06:00:09 EST 2025
Tue Nov 18 21:45:47 EST 2025
Fri Feb 23 02:18:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Invariant subspaces
Functor
47A15
Commutant
Invariant
Invariant subspace
Orbit
Eigenvector
Linear operator
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c336t-1b7191f0a4b4f60be1e9e6595ee8ff60fe0aa580ab9ef09c15fde23c12506cff3
OpenAccessLink https://dx.doi.org/10.1016/S0024-3795(01)00239-7
PageCount 4
ParticipantIDs pascalfrancis_primary_5669720
crossref_primary_10_1016_S0024_3795_01_00239_7
crossref_citationtrail_10_1016_S0024_3795_01_00239_7
elsevier_sciencedirect_doi_10_1016_S0024_3795_01_00239_7
PublicationCentury 2000
PublicationDate 2001-05-15
PublicationDateYYYYMMDD 2001-05-15
PublicationDate_xml – month: 05
  year: 2001
  text: 2001-05-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Linear algebra and its applications
PublicationYear 2001
Publisher Elsevier Inc
Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
References L. Fuchs, Infinite Abelian Groups, vols. I and II, Academic Press, New York, 1970 and 1973
Halmos (BIB5) 1975; 4
Carlson (BIB3) 1972; 5
Barraa, Charles (BIB1) 1990; 135
Barraa, Charles (BIB2) 1991; 153
I. Kaplansky, Infinite Abelian Groups, The University of Michigan, 1954
10.1016/S0024-3795(01)00239-7_BIB4
Barraa (10.1016/S0024-3795(01)00239-7_BIB1) 1990; 135
Barraa (10.1016/S0024-3795(01)00239-7_BIB2) 1991; 153
Carlson (10.1016/S0024-3795(01)00239-7_BIB3) 1972; 5
10.1016/S0024-3795(01)00239-7_BIB6
Halmos (10.1016/S0024-3795(01)00239-7_BIB5) 1975; 4
References_xml – volume: 135
  start-page: 167
  year: 1990
  end-page: 170
  ident: BIB1
  article-title: Sur l'orbite d'un espace de Banach sous l'action du commutant d'un opérateur nilpotent
  publication-title: Linear Algebra Appl.
– volume: 5
  start-page: 293
  year: 1972
  end-page: 298
  ident: BIB3
  article-title: Inequalities for the degrees of elementary divisors of modules
  publication-title: Linear Algebra Appl.
– volume: 4
  start-page: 11
  year: 1975
  end-page: 15
  ident: BIB5
  article-title: Eigenvectors and adjoints
  publication-title: Linear Algebra Appl.
– reference: L. Fuchs, Infinite Abelian Groups, vols. I and II, Academic Press, New York, 1970 and 1973
– reference: I. Kaplansky, Infinite Abelian Groups, The University of Michigan, 1954
– volume: 153
  start-page: 177
  year: 1991
  end-page: 182
  ident: BIB2
  article-title: Sous-espaces invariants d'un opérateur nilpotent sur un espace de Banach
  publication-title: Linear Algebra Appl.
– volume: 135
  start-page: 167
  year: 1990
  ident: 10.1016/S0024-3795(01)00239-7_BIB1
  article-title: Sur l'orbite d'un espace de Banach sous l'action du commutant d'un opérateur nilpotent
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(90)90119-W
– ident: 10.1016/S0024-3795(01)00239-7_BIB4
– volume: 5
  start-page: 293
  year: 1972
  ident: 10.1016/S0024-3795(01)00239-7_BIB3
  article-title: Inequalities for the degrees of elementary divisors of modules
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(72)90010-9
– ident: 10.1016/S0024-3795(01)00239-7_BIB6
– volume: 153
  start-page: 177
  year: 1991
  ident: 10.1016/S0024-3795(01)00239-7_BIB2
  article-title: Sous-espaces invariants d'un opérateur nilpotent sur un espace de Banach
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(91)90217-K
– volume: 4
  start-page: 11
  year: 1975
  ident: 10.1016/S0024-3795(01)00239-7_BIB5
  article-title: Eigenvectors and adjoints
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(71)90025-5
SSID ssj0004702
Score 1.6029595
Snippet P.R. Halmos proved that for a linear operator A over a finite-dimensional complex vector space E, every A-invariant subspace of E is the range of a commutant...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 171
SubjectTerms Commutant
Exact sciences and technology
Function theory, analysis
Functor
Invariant subspaces
Mathematical analysis
Mathematical methods in physics
Mathematics
Operator theory
Physics
Sciences and techniques of general use
Title On the orbit of invariant subspaces of linear operators in finite-dimensional spaces (new proof of a Halmos's result)
URI https://dx.doi.org/10.1016/S0024-3795(01)00239-7
Volume 329
WOSCitedRecordID wos000168234800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMIIT7FgCE_ILFpMrObpI4fKzQ0EGxIDNS3yElsUS0kUZNWE38Afzfn2HE6Jhh74CVqrd7Fzf1i3_m-EHpJYxGmfBKTSNKYwCqZE5lHgsDerbnSionuwO3rB358HM_n4tNo9LPPhVkXvCzj83NR_1dRwxgI26TOXkPcnikMwGcQOlxB7HD9J8Gf2MDFapkuWlsQYg32MDzA_QYWiboLwapM7nFpavhUteoc7V1YrF4YDZTkpuK_rdax7whADwX920RzAWmXUnkki-8mRI8bv0OzKtr-TKFPrrb8TRsRMMi9j2LTYe6xI6vVjy6qYJbmqjj7BpvW2YXjCGY86TYh06cHhLBq2c6Z_RIbuBk4LJFgY8lktgWL232Z7dlzaWG3ZwyfPXf426bFgOiScwkfdrPeg__bJudDD4eoNmCVGFYJZUnHJuE30NaERyIeo63Zu8P5-yHDllNXd97efsgFOxjmtEvZnpvPn7ScO7Vs4N3TtmnKhiZzeg_ddSYInlno3EcjVT5Atz_6-r3NQ7Q6KTF8xR2IcKWxBxH2IDLDFkTYgwh-hy-DCDuCXYAQ7iBkaCW2EHrVYAugvUfoy9vD0zdHxDXoIFkQTFvCUg7mvqYyTEM9paliSihToFKpWMOAVlTKKKYyFUpTkbFI52oSZKBU02mmdfAYjcuqVE8Q5qAjhZIqxacqpIqlpu2ByHNjLxhFchuF_QNNMle93jRRKZK_CnQbvfZktS3fchVB3EsrcTqo1S0TQOJVpDsXpOtvCBaT4BP69LpzeYZuDW_YczRulyu1g25m63bRLF84iP4CpkatTw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+orbit+of+invariant+subspaces+of+linear+operators+in+finite-dimensional+spaces+%28new+proof+of+a+Halmos%27s+result%29&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Faouzi%2C+Abdelkhalek&rft.date=2001-05-15&rft.issn=0024-3795&rft.volume=329&rft.issue=1-3&rft.spage=171&rft.epage=174&rft_id=info:doi/10.1016%2FS0024-3795%2801%2900239-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0024_3795_01_00239_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon