Sequential Human Gait Classification With Distributed Radar Sensor Fusion

This paper presents different information fusion approaches to classify human gait patterns and falls in a radar sensors network. The human gaits classified in this work are both individual and sequential, continuous gait collected by a FMCW radar and three UWB pulse radar placed at different spatia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal Jg. 21; H. 6; S. 7590 - 7603
Hauptverfasser: Li, Haobo, Mehul, Ajay, Le Kernec, Julien, Gurbuz, Sevgi Z., Fioranelli, Francesco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 15.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1530-437X, 1558-1748
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents different information fusion approaches to classify human gait patterns and falls in a radar sensors network. The human gaits classified in this work are both individual and sequential, continuous gait collected by a FMCW radar and three UWB pulse radar placed at different spatial locations. Sequential gaits are those containing multiple gait styles performed one after the other, with natural transitions in between, including fall events developing from walking gait in some cases. The proposed information fusion approaches operate at signal and decision level. For the signal level combination, a simple trilateration algorithm is implemented on the range data from the 3 UWB radar sensors, achieving good classification results with the proposed Bi-LSTM (Bidirectional LSTM neural network) as classifier, without exploiting conventional micro-Doppler information. For the decision level fusion, the classification results of individual radars using the Bi-LSTM network are combined with a robust Naive Bayes Combiner (NBC), and this showed subsequent improvement compared to the single radar case thanks to multi-perspective views of the subjects. Compared to conventional SVM and Random Forest classifiers, the proposed approach yields +20% and +17% improvement in the classification accuracy of individual gaits for the range-only trilateration method and NBC decision fusion method, respectively. When classifying sequential gaits, the overall accuracy for the two proposed methods reaches 93% and 90%, with validation via a 'leaving one participant out' approach to test the robustness with subjects unknown to the network.
AbstractList This paper presents different information fusion approaches to classify human gait patterns and falls in a radar sensors network. The human gaits classified in this work are both individual and sequential, continuous gait collected by a FMCW radar and three UWB pulse radar placed at different spatial locations. Sequential gaits are those containing multiple gait styles performed one after the other, with natural transitions in between, including fall events developing from walking gait in some cases. The proposed information fusion approaches operate at signal and decision level. For the signal level combination, a simple trilateration algorithm is implemented on the range data from the 3 UWB radar sensors, achieving good classification results with the proposed Bi-LSTM (Bidirectional LSTM neural network) as classifier, without exploiting conventional micro-Doppler information. For the decision level fusion, the classification results of individual radars using the Bi-LSTM network are combined with a robust Naive Bayes Combiner (NBC), and this showed subsequent improvement compared to the single radar case thanks to multi-perspective views of the subjects. Compared to conventional SVM and Random Forest classifiers, the proposed approach yields +20% and +17% improvement in the classification accuracy of individual gaits for the range-only trilateration method and NBC decision fusion method, respectively. When classifying sequential gaits, the overall accuracy for the two proposed methods reaches 93% and 90%, with validation via a ’leaving one participant out’ approach to test the robustness with subjects unknown to the network.
Author Fioranelli, Francesco
Le Kernec, Julien
Gurbuz, Sevgi Z.
Li, Haobo
Mehul, Ajay
Author_xml – sequence: 1
  givenname: Haobo
  orcidid: 0000-0002-8464-9565
  surname: Li
  fullname: Li, Haobo
  email: h.li.4@research.gla.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K
– sequence: 2
  givenname: Ajay
  surname: Mehul
  fullname: Mehul, Ajay
  email: aanbuselvam@crimson.ua.edu
  organization: Department of Computer Science, University of Alabama, Tuscaloosa, AL, USA
– sequence: 3
  givenname: Julien
  orcidid: 0000-0003-2124-6803
  surname: Le Kernec
  fullname: Le Kernec, Julien
  email: julien.lekernec@glasgow.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow, U.K
– sequence: 4
  givenname: Sevgi Z.
  orcidid: 0000-0001-7487-9087
  surname: Gurbuz
  fullname: Gurbuz, Sevgi Z.
  email: szgurbuz@ua.edu
  organization: Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL, USA
– sequence: 5
  givenname: Francesco
  orcidid: 0000-0001-8254-8093
  surname: Fioranelli
  fullname: Fioranelli, Francesco
  email: f.fioranelli@tudelft.nl
  organization: Microwave Sensing, Signals and Systems (MS3) Section, TU Delft, Delft, The Netherlands
BookMark eNp9kD1PwzAURS0EEm3hByAWS8wpduz4Y0SlX6gCiYJgs2zHEa7apNjOwL8noRUDA9N7wz3vPp0hOK2b2gFwhdEYYyRvH9bTx3GOcjQmiDIp8QkY4KIQGeZUnPY7QRkl_P0cDGPcIIQlL_gALNfus3V18noLF-1O13CufYKTrY7RV97q5Jsavvn0Ae99TMGbNrkSPutSB7h2dWwCnLWxC12As0pvo7s8zhF4nU1fJots9TRfTu5WmSWEpQxjKktnCksrbXleUMwow04IK00ptCGSSE4NIQgzbgtnGOKY5qVBUhpdaTICN4e7-9B0r8ekNk0b6q5S5VTmomCSiC6FDykbmhiDq9Q--J0OXwoj1RtTvTHVG1NHYx3D_zDWpx8BKWi__Ze8PpDeOffbJAliAiPyDTiRejg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s00521_022_07776_3
crossref_primary_10_1109_THMS_2021_3131675
crossref_primary_10_1109_ACCESS_2021_3122516
crossref_primary_10_1016_j_patcog_2024_111101
crossref_primary_10_1109_TGRS_2022_3189746
crossref_primary_10_3390_rs13183791
crossref_primary_10_3390_s21113643
crossref_primary_10_1109_ACCESS_2024_3514140
crossref_primary_10_1109_JSEN_2024_3513983
crossref_primary_10_1016_j_bspc_2022_103741
crossref_primary_10_5515_KJKIEES_2025_36_1_51
crossref_primary_10_3390_s21093158
crossref_primary_10_1109_JSEN_2023_3323323
crossref_primary_10_3390_rs14010123
crossref_primary_10_1109_TGRS_2021_3122332
crossref_primary_10_1049_rsn2_12249
crossref_primary_10_1109_ACCESS_2023_3289402
crossref_primary_10_1038_s41598_025_97757_y
crossref_primary_10_1109_JSEN_2022_3232085
crossref_primary_10_1109_JSEN_2024_3454714
crossref_primary_10_3390_s21134291
crossref_primary_10_3390_app15137446
crossref_primary_10_1109_ACCESS_2022_3228639
crossref_primary_10_1109_JIOT_2023_3330996
crossref_primary_10_1109_TIM_2024_3457967
crossref_primary_10_3390_s23115100
crossref_primary_10_1109_JSEN_2022_3154092
crossref_primary_10_1016_j_dsp_2023_103964
crossref_primary_10_1109_JSEN_2024_3432636
crossref_primary_10_1016_j_smhl_2022_100334
crossref_primary_10_1109_JIOT_2023_3242417
crossref_primary_10_1016_j_neucom_2024_128313
crossref_primary_10_3390_s23031457
crossref_primary_10_1109_JSEN_2023_3267820
crossref_primary_10_1109_TGRS_2023_3345829
crossref_primary_10_1109_JSEN_2024_3482291
Cites_doi 10.1109/JSEN.2016.2628099
10.1109/COMPEM.2019.8779144
10.1109/JSEN.2018.2872894
10.1109/JSEN.2020.3006386
10.1049/iet-rsn.2015.0144
10.1109/JSEN.2019.2917375
10.1109/TMTT.2017.2650911
10.1162/neco.1997.9.8.1735
10.1111/jgs.15304
10.1109/MPOT.2019.2906977
10.1109/RADAR.2019.8835661
10.1109/JSEN.2014.2370945
10.1007/s10115-012-0586-6
10.1016/j.neunet.2005.06.042
10.1016/j.dsp.2019.01.013
10.1109/JSEN.2020.3004581
10.1109/LGRS.2015.2491329
10.1109/MSP.2019.2903715
10.1109/TMTT.2017.2650909
10.1109/RADAR.2019.8835611
10.1109/EuRAD.2014.6991233
10.1016/j.medengphy.2016.12.011
10.1109/JSEN.2017.2697077
10.1109/MSP.2015.2499314
10.1109/LGRS.2015.2452311
10.1109/LGRS.2016.2539386
10.1109/IMBIOC.2019.8777855
10.1109/TGRS.2019.2929096
10.1109/PIERS-FALL.2017.8293530
10.1109/ICASSP.2013.6638947
10.1109/JSEN.2019.2946095
10.1109/JERM.2018.2827099
10.23919/EURAD.2017.8249173
10.1109/MSP.2018.2890128
10.1049/iet-rsn.2015.0118
10.1109/TGRS.2009.2012849
10.1109/TAES.2018.2799758
10.1049/iet-rsn.2018.5054
10.1109/TGRS.2019.2908758
10.1109/TBME.2019.2893528
10.1109/TAES.2018.2883847
10.1109/TBME.2014.2319333
10.1109/TAES.2019.2910980
10.1109/ASRU.2015.7404814
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3046991
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 7603
ExternalDocumentID 10_1109_JSEN_2020_3046991
9306810
Genre orig-research
GrantInformation_xml – fundername: University of Glasgow Mobility Scholarship through the research exchange to the University of Alabama
  funderid: 10.13039/100011531
– fundername: U.K. Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/R041679/1 (INSHEP)
  funderid: 10.13039/501100000266
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
ESBDL
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c336t-1149deb5c4fac725416461e88c9bd8ab393974b330167c5eb607142db099bafa3
IEDL.DBID RIE
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000636053600050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Mon Jun 30 10:06:45 EDT 2025
Tue Nov 18 22:15:17 EST 2025
Sat Nov 29 05:43:07 EST 2025
Wed Aug 27 02:44:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c336t-1149deb5c4fac725416461e88c9bd8ab393974b330167c5eb607142db099bafa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7487-9087
0000-0003-2124-6803
0000-0002-8464-9565
0000-0001-8254-8093
OpenAccessLink https://ieeexplore.ieee.org/document/9306810
PQID 2492856938
PQPubID 75733
PageCount 14
ParticipantIDs crossref_primary_10_1109_JSEN_2020_3046991
ieee_primary_9306810
crossref_citationtrail_10_1109_JSEN_2020_3046991
proquest_journals_2492856938
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
kim (ref15) 2009; 47
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
kay (ref45) 1993
References_xml – ident: ref1
  doi: 10.1109/JSEN.2016.2628099
– ident: ref41
  doi: 10.1109/COMPEM.2019.8779144
– ident: ref31
  doi: 10.1109/JSEN.2018.2872894
– ident: ref28
  doi: 10.1109/JSEN.2020.3006386
– ident: ref35
  doi: 10.1049/iet-rsn.2015.0144
– ident: ref34
  doi: 10.1109/JSEN.2019.2917375
– year: 1993
  ident: ref45
  publication-title: Fundamentals of Statistical Signal Processing
– ident: ref10
  doi: 10.1109/TMTT.2017.2650911
– ident: ref19
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref2
  doi: 10.1111/jgs.15304
– ident: ref12
  doi: 10.1109/MPOT.2019.2906977
– ident: ref43
  doi: 10.1109/RADAR.2019.8835661
– ident: ref3
  doi: 10.1109/JSEN.2014.2370945
– ident: ref39
  doi: 10.1007/s10115-012-0586-6
– ident: ref22
  doi: 10.1016/j.neunet.2005.06.042
– ident: ref24
  doi: 10.1016/j.dsp.2019.01.013
– ident: ref42
  doi: 10.1109/JSEN.2020.3004581
– ident: ref17
  doi: 10.1109/LGRS.2015.2491329
– ident: ref6
  doi: 10.1109/MSP.2019.2903715
– ident: ref11
  doi: 10.1109/TMTT.2017.2650909
– ident: ref5
  doi: 10.1109/RADAR.2019.8835611
– ident: ref37
  doi: 10.1109/EuRAD.2014.6991233
– ident: ref32
  doi: 10.1016/j.medengphy.2016.12.011
– ident: ref9
  doi: 10.1109/JSEN.2017.2697077
– ident: ref8
  doi: 10.1109/MSP.2015.2499314
– ident: ref38
  doi: 10.1109/LGRS.2015.2452311
– ident: ref44
  doi: 10.1109/LGRS.2016.2539386
– ident: ref26
  doi: 10.1109/IMBIOC.2019.8777855
– ident: ref33
  doi: 10.1109/TGRS.2019.2929096
– ident: ref36
  doi: 10.1109/PIERS-FALL.2017.8293530
– ident: ref40
  doi: 10.1109/ICASSP.2013.6638947
– ident: ref27
  doi: 10.1109/JSEN.2019.2946095
– ident: ref30
  doi: 10.1109/JERM.2018.2827099
– ident: ref20
  doi: 10.23919/EURAD.2017.8249173
– ident: ref7
  doi: 10.1109/MSP.2018.2890128
– ident: ref14
  doi: 10.1049/iet-rsn.2015.0118
– volume: 47
  start-page: 1328
  year: 2009
  ident: ref15
  article-title: Human activity classification based on micro-Doppler signatures using a support vector machine
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2009.2012849
– ident: ref16
  doi: 10.1109/TAES.2018.2799758
– ident: ref21
  doi: 10.1049/iet-rsn.2018.5054
– ident: ref25
  doi: 10.1109/TGRS.2019.2908758
– ident: ref4
  doi: 10.1109/TBME.2019.2893528
– ident: ref18
  doi: 10.1109/TAES.2018.2883847
– ident: ref29
  doi: 10.1109/TBME.2014.2319333
– ident: ref13
  doi: 10.1109/TAES.2019.2910980
– ident: ref23
  doi: 10.1109/ASRU.2015.7404814
SSID ssj0019757
Score 2.54993
Snippet This paper presents different information fusion approaches to classify human gait patterns and falls in a radar sensors network. The human gaits classified in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7590
SubjectTerms Algorithms
Classification
Classifiers
Data integration
Decision trees
Doppler radar
fall detection
Gait
gait analysis
Legged locomotion
machine learning
Multisensor fusion
Neural networks
Pulse radar
Radar
RF sensing
Sensor fusion
Sensor phenomena and characterization
Sensors
Ultra wideband radar
Ultrawideband radar
Walking
Title Sequential Human Gait Classification With Distributed Radar Sensor Fusion
URI https://ieeexplore.ieee.org/document/9306810
https://www.proquest.com/docview/2492856938
Volume 21
WOSCitedRecordID wos000636053600050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mENQHPzbF6ZQ8-CTWtU3bJI-imx_IEOfH3kqSZmwwNtk6wf_eXNYNRRF860MC5X695n6Xu98BnMTUUEn9nmeoMl5k6bWnuK896cvA8CQwkVP7fLln7TbvdsVDCc6WvTDGGFd8Zs7x0d3lZ2M9w1RZQ9j4lmM_1QpjbN6rtbwxEMypeloH9r2Ism5xgxn4onHXabYtEwwtQUU2KIJvZ5AbqvLjT-yOl9bW_15sGzaLMJJczHHfgZIZVWDji7hgBdaK-eb9jyrcdlzFtPXmIXFpe3ItBzlxEzGxVsjBQ14HeZ9coZIuDsEyGXmUmZyQjmW64wlpzTCxtgvPrebT5Y1XDFHwNKVJ7lm-IzKjYh31pGaWDqKgmIWBa6EyLhUVNiKJFKXYj6Bjo1BwLgozZUNHJXuS7kF5NB6ZfSBca5P4oZBMWtePEpmwTEQqwf0JC1UN_IVZU10ojOOgi2HqmIYvUkQiRSTSAokanC63vM3lNf5aXEXTLxcWVq9BfYFdWjjgNEUhRB4ngvKD33cdwnqI5SlYmhfXoZxPZuYIVvV7PphOjt239Qkyf8pE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5EhemDv8Xp1Dz4JFbbJm2TR1Hn1DnETd1bSdKMDcYmWyf435vL6lAUwbc-JFDu6zX3Xe6-AziKqKGS-h3PUGU8Zum1p7ivPenLwPA4MMypfT7Xk0aDt9viYQ5OZr0wxhhXfGZO8dHd5WdDPcFU2Zmw8S3HfqqFiLEwmHZrze4MROJ0Pa0L-x6jSbu4wwx8cXbbvGpYLhhaiop8UATfTiE3VuXHv9gdMNXV_73aGqwUgSQ5nyK_DnNmsAHLX-QFN6BUTDjvvm_CTdPVTFt_7hOXuCfXspcTNxMTq4UcQOSll3fJJWrp4hgsk5FHmckRaVquOxyR6gRTa1vwVL1qXdS8YoyCpymNc88yHpEZFWnWkTqxhBAlxSwQXAuVcamosDEJU5RiR4KOjELJORZmygaPSnYk3Yb5wXBgdoBwrU3sh0Im0jo_i2WcZIKpGPfHSajK4H-aNdWFxjiOuuinjmv4IkUkUkQiLZAow_Fsy-tUYOOvxZto-tnCwuplqHxilxYuOE5RCpFHsaB89_ddh1Cqte7raf2mcbcHSyEWq2ChXlSB-Xw0MfuwqN_y3nh04L6zD-OlzYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+Human+Gait+Classification+With+Distributed+Radar+Sensor+Fusion&rft.jtitle=IEEE+sensors+journal&rft.au=Li%2C+Haobo&rft.au=Mehul%2C+Ajay&rft.au=Le+Kernec%2C+Julien&rft.au=Gurbuz%2C+Sevgi+Z.&rft.date=2021-03-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=6&rft.spage=7590&rft.epage=7603&rft_id=info:doi/10.1109%2FJSEN.2020.3046991&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2020_3046991
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon