Latent Feature‐Based Type 2 Diabetes Prediction Using a Hybrid Stacked Sparse Autoencoder and Machine Learning Models

ABSTRACT Early and precise prediction of Type 2 diabetes is vital for effective intervention. However, extracting meaningful insights from high‐dimensional datasets with sparse values remains challenging. Sparsity and redundant features often hinder traditional machine learning algorithms' abil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering reports (Hoboken, N.J.) Ročník 7; číslo 9
Hlavní autoři: Abdussamad, Daud, Hanita, Sokkalingam, Rajalingam, Zubair, Muhammad, Khan, Iliyas Karim, Mahmood, Zafar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.09.2025
Wiley
Témata:
ISSN:2577-8196, 2577-8196
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Early and precise prediction of Type 2 diabetes is vital for effective intervention. However, extracting meaningful insights from high‐dimensional datasets with sparse values remains challenging. Sparsity and redundant features often hinder traditional machine learning algorithms' ability to identify informative patterns. While conventional Stacked Sparse Autoencoders (SSAE) can capture key features in dense data, they typically struggle with high‐dimensional sparse data, reducing classification accuracy. To address this limitation, the study proposes a Hybrid Stacked Sparse Autoencoder (HSSAE) algorithm designed for robust feature extraction and classification in sparse data environments. The architecture incorporates L1 and L2 regularization within a binary cross‐entropy loss and employs dropout and batch normalization to improve generalization and training stability. The HSSAE algorithm's performance was tested with a sigmoid classifier and various machine learning techniques. When combined with a sigmoid layer, the model achieved 89% accuracy and an F1 score of 0.89. It also outperformed baseline models when integrated with traditional classifiers; notably, the HSSAE + K‐Nearest Neighbor (KNN) achieved an F1 score of 0.91, a recall of 0.98, 90% accuracy, and the lowest hamming loss of 0.10. Comparative evaluations included baseline classifiers like Logistic Regression (LR), KNNs, Naïve Bayes (NB), AdaBoost, and XGBoost, applied directly to the preprocessed dataset. An ablation study tested these classifiers on features extracted via the SSAE. In both cases, the HSSAE algorithm showed superior performance across all metrics. These findings demonstrate the HSSAE algorithm's effectiveness in extracting discriminative features from sparse, high‐dimensional data, emphasizing its potential for clinical decision support systems requiring high accuracy and reliability. Overview of the proposed Hybrid Stacked Sparse Autoencoder (HSSAE) framework.
AbstractList ABSTRACT Early and precise prediction of Type 2 diabetes is vital for effective intervention. However, extracting meaningful insights from high‐dimensional datasets with sparse values remains challenging. Sparsity and redundant features often hinder traditional machine learning algorithms' ability to identify informative patterns. While conventional Stacked Sparse Autoencoders (SSAE) can capture key features in dense data, they typically struggle with high‐dimensional sparse data, reducing classification accuracy. To address this limitation, the study proposes a Hybrid Stacked Sparse Autoencoder (HSSAE) algorithm designed for robust feature extraction and classification in sparse data environments. The architecture incorporates L1 and L2 regularization within a binary cross‐entropy loss and employs dropout and batch normalization to improve generalization and training stability. The HSSAE algorithm's performance was tested with a sigmoid classifier and various machine learning techniques. When combined with a sigmoid layer, the model achieved 89% accuracy and an F1 score of 0.89. It also outperformed baseline models when integrated with traditional classifiers; notably, the HSSAE + K‐Nearest Neighbor (KNN) achieved an F1 score of 0.91, a recall of 0.98, 90% accuracy, and the lowest hamming loss of 0.10. Comparative evaluations included baseline classifiers like Logistic Regression (LR), KNNs, Naïve Bayes (NB), AdaBoost, and XGBoost, applied directly to the preprocessed dataset. An ablation study tested these classifiers on features extracted via the SSAE. In both cases, the HSSAE algorithm showed superior performance across all metrics. These findings demonstrate the HSSAE algorithm's effectiveness in extracting discriminative features from sparse, high‐dimensional data, emphasizing its potential for clinical decision support systems requiring high accuracy and reliability. Overview of the proposed Hybrid Stacked Sparse Autoencoder (HSSAE) framework.
ABSTRACT Early and precise prediction of Type 2 diabetes is vital for effective intervention. However, extracting meaningful insights from high‐dimensional datasets with sparse values remains challenging. Sparsity and redundant features often hinder traditional machine learning algorithms' ability to identify informative patterns. While conventional Stacked Sparse Autoencoders (SSAE) can capture key features in dense data, they typically struggle with high‐dimensional sparse data, reducing classification accuracy. To address this limitation, the study proposes a Hybrid Stacked Sparse Autoencoder (HSSAE) algorithm designed for robust feature extraction and classification in sparse data environments. The architecture incorporates L1 and L2 regularization within a binary cross‐entropy loss and employs dropout and batch normalization to improve generalization and training stability. The HSSAE algorithm's performance was tested with a sigmoid classifier and various machine learning techniques. When combined with a sigmoid layer, the model achieved 89% accuracy and an F1 score of 0.89. It also outperformed baseline models when integrated with traditional classifiers; notably, the HSSAE + K‐Nearest Neighbor (KNN) achieved an F1 score of 0.91, a recall of 0.98, 90% accuracy, and the lowest hamming loss of 0.10. Comparative evaluations included baseline classifiers like Logistic Regression (LR), KNNs, Naïve Bayes (NB), AdaBoost, and XGBoost, applied directly to the preprocessed dataset. An ablation study tested these classifiers on features extracted via the SSAE. In both cases, the HSSAE algorithm showed superior performance across all metrics. These findings demonstrate the HSSAE algorithm's effectiveness in extracting discriminative features from sparse, high‐dimensional data, emphasizing its potential for clinical decision support systems requiring high accuracy and reliability.
Early and precise prediction of Type 2 diabetes is vital for effective intervention. However, extracting meaningful insights from high‐dimensional datasets with sparse values remains challenging. Sparsity and redundant features often hinder traditional machine learning algorithms' ability to identify informative patterns. While conventional Stacked Sparse Autoencoders (SSAE) can capture key features in dense data, they typically struggle with high‐dimensional sparse data, reducing classification accuracy. To address this limitation, the study proposes a Hybrid Stacked Sparse Autoencoder (HSSAE) algorithm designed for robust feature extraction and classification in sparse data environments. The architecture incorporates L1 and L2 regularization within a binary cross‐entropy loss and employs dropout and batch normalization to improve generalization and training stability. The HSSAE algorithm's performance was tested with a sigmoid classifier and various machine learning techniques. When combined with a sigmoid layer, the model achieved 89% accuracy and an F 1 score of 0.89. It also outperformed baseline models when integrated with traditional classifiers; notably, the HSSAE + K‐Nearest Neighbor (KNN) achieved an F 1 score of 0.91, a recall of 0.98, 90% accuracy, and the lowest hamming loss of 0.10. Comparative evaluations included baseline classifiers like Logistic Regression (LR), KNNs, Naïve Bayes (NB), AdaBoost, and XGBoost, applied directly to the preprocessed dataset. An ablation study tested these classifiers on features extracted via the SSAE. In both cases, the HSSAE algorithm showed superior performance across all metrics. These findings demonstrate the HSSAE algorithm's effectiveness in extracting discriminative features from sparse, high‐dimensional data, emphasizing its potential for clinical decision support systems requiring high accuracy and reliability.
Author Zubair, Muhammad
Khan, Iliyas Karim
Sokkalingam, Rajalingam
Mahmood, Zafar
Abdussamad
Daud, Hanita
Author_xml – sequence: 1
  orcidid: 0009-0005-7832-7235
  surname: Abdussamad
  fullname: Abdussamad
  email: abdussamad_22009779@utp.edu.my
  organization: Universiti Teknologi PETRONAS
– sequence: 2
  givenname: Hanita
  surname: Daud
  fullname: Daud, Hanita
  organization: Universiti Teknologi PETRONAS
– sequence: 3
  givenname: Rajalingam
  surname: Sokkalingam
  fullname: Sokkalingam, Rajalingam
  organization: Universiti Teknologi PETRONAS
– sequence: 4
  givenname: Muhammad
  surname: Zubair
  fullname: Zubair, Muhammad
  organization: Universiti Teknologi PETRONAS
– sequence: 5
  givenname: Iliyas Karim
  surname: Khan
  fullname: Khan, Iliyas Karim
  organization: Universiti Teknologi PETRONAS
– sequence: 6
  givenname: Zafar
  surname: Mahmood
  fullname: Mahmood, Zafar
  organization: University of Gujrat
BookMark eNp9kc9OAjEQxhuDiYhcfIKeTdD-WdrliApogn8S4dzMtrNYxC5p1xhuPoLP6JO4gDGePM1k5vt-mcl3TFqhCkjIKWfnnDFxgWEhzjWT_fyAtEVf617OB6r1pz8i3ZSWrBFzzZlkbfI-hRpDTccI9VvEr4_PS0jo6GyzRirotYcCa0z0MaLztvZVoPPkw4ICvdkU0Tv6VIN9aRxPa4gJ6fCtrjDYymGkEBy9A_vsA9IpQgxb412zWqUTcljCKmH3p3bIfDyaXd30pg-T26vhtGelVHlztIOyb12hUeZKCi2Yc1hk2mnghR1oC5LpgVCF5H2pZWmt1s2nTgFkyknZIbd7rqtgadbRv0LcmAq82Q2quDAQa29XaCzmmQClLOc6y1g2AKek5JznJVoptqyzPcvGKqWI5S-PM7NNwGwTMLsEGjHfi9_9Cjf_KM3ofiL2nm-wx4on
Cites_doi 10.1126/science.1127647
10.54254/2755‐2721/32/20230214
10.1007/s10462‐023‐10466‐8
10.1016/j.bspc.2024.106501
10.1109/ICASSP40776.2020.9054412
10.1016/j.cegh.2018.12.004
10.1016/j.cmpb.2021.105968
10.1038/srep26094
10.1186/s13098‐021‐00767‐9
10.1109/ICAIT61638.2024.10690358
10.5152/TurkArchPediatr.2025.24183
10.1038/s41598‐025‐87992‐8
10.1016/j.dscb.2024.100135
10.3389/fdgth.2025.1557467
10.1016/j.compbiomed.2024.108734
10.1007/s10462-023-10662-6
10.58445/rars.546
10.3934/math.20241222
10.3934/publichealth.2024004
10.1186/s12916‐022‐02438‐6
10.1109/JBHI.2025.3578419
10.2337/dc25-S002
10.31782/IJCRR.2021.13127
10.1145/3615366.3615376
10.1109/ICICoS62600.2024.10636871
10.37934/ard.129.1.6074
10.1016/j.health.2022.100118
10.1007/s11063‐018‐9894‐5
10.1016/j.diabres.2021.109119
10.1109/ICCCNT61001.2024.10724390
10.3390/app14052132
10.1007/s00521‐021‐06431‐7
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/eng2.70358
DatabaseName Wiley Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2577-8196
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ce842a66c11744049ad6331118fec323
10_1002_eng2_70358
ENG270358
Genre researchArticle
GrantInformation_xml – fundername: YUTP‐FRG
  funderid: 015LC0‐442
GroupedDBID 0R~
1OC
24P
AAMMB
ABJCF
ACCMX
ACXQS
ADKYN
ADMLS
ADZMN
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
WIN
AAYXX
AFFHD
ALUQN
CITATION
ID FETCH-LOGICAL-c3368-81daf5cdb7e38632720ddeb47d7a1bc97ca307926b315373fcc77819d6aa46d33
IEDL.DBID 24P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001585376600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2577-8196
IngestDate Fri Oct 03 12:50:59 EDT 2025
Sat Nov 29 07:07:06 EST 2025
Fri Sep 26 10:30:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3368-81daf5cdb7e38632720ddeb47d7a1bc97ca307926b315373fcc77819d6aa46d33
Notes This work was supported by the YUTP‐FRG (015LC0‐442).
Funding
ORCID 0009-0005-7832-7235
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70358
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_ce842a66c11744049ad6331118fec323
crossref_primary_10_1002_eng2_70358
wiley_primary_10_1002_eng2_70358_ENG270358
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Engineering reports (Hoboken, N.J.)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2019; 7
2023; 56
2025; 7
2021; 202
2024; 96
2024; 32
2025; 15
2022; 20
2024; 11
2025
2024
2024; 14
2006; 313
2025; 10
2021; 13
2016; 6
2023
2021
2020
2024; 9
2022; 34
2019; 49
2025; 48
2024; 179
2022; 2
2025; 60
2025; 129
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_20_1
Khan I. K. (e_1_2_10_33_1) 2024
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Alketbi S. (e_1_2_10_18_1) 2024
Genc S. (e_1_2_10_22_1) 2024
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 14
  year: 2024
  article-title: The Impact of Diabetes Mellitus on the Development of Psychiatric and Neurological Disorders
  publication-title: Brain Disorders
– volume: 20
  start-page: 1
  issue: 247
  year: 2022
  end-page: 12
  article-title: The Need for Screening, Early Diagnosis, and Prediction of Chronic Kidney Disease in People With Diabetes in Low‐ and Middle‐Income Countries—A Review of the Current Literature
  publication-title: BMC Medicine
– volume: 96
  year: 2024
  article-title: Optimizing Diabetic Retinopathy Detection With Inception‐V4 and Dynamic Version of Snow Leopard Optimization Algorithm
  publication-title: Biomedical Signal Processing and Control
– start-page: 1409
  year: 2020
  end-page: 1413
– volume: 202
  year: 2021
  article-title: Diabetes Detection Using Deep Learning Techniques With Oversampling and Feature Augmentation
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 49
  start-page: 1723
  issue: 3
  year: 2019
  end-page: 1735
  article-title: Discriminative Autoencoder for Feature Extraction: Application to Character Recognition
  publication-title: Neural Processing Letters
– volume: 129
  start-page: 60
  issue: 1
  year: 2025
  end-page: 74
  article-title: Regularized Stacked Autoencoder With Dropout‐Layer to Overcome Overfitting in Numerical High‐Dimensional Sparse Data
  publication-title: Journal of Advanced Research Design
– year: 2024
– volume: 179
  year: 2024
  article-title: Current Strategies to Address Data Scarcity in Artificial Intelligence‐Based Drug Discovery : A Comprehensive Review
  publication-title: Computers in Biology and Medicine
– volume: 6
  start-page: 1
  year: 2016
  end-page: 10
  article-title: Deep Patient: An Unsupervised Representation to Predict the Future of Patients From the Electronic Health Records
  publication-title: Scientific Reports
– volume: 56
  start-page: 13521
  issue: 11
  year: 2023
  end-page: 13617
  article-title: Deep Learning Modelling Techniques: Current Progress, Applications, Advantages, and Challenges
  publication-title: Artificial Intelligence Review
– volume: 14
  issue: 5
  year: 2024
  article-title: Cardiovascular Health Management in Diabetic Patients With Machine‐Learning‐Driven Predictions and Interventions
  publication-title: Applied Sciences
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the Dimensionality of Data With Neural Networks
  publication-title: Science
– start-page: 1
  year: 2024
  end-page: 5
– volume: 13
  year: 2021
  article-title: Machine Learning and Deep Learning Predictive Models for Type 2 Diabetes: A Systematic Review
  publication-title: Diabetology & Metabolic Syndrome
– start-page: 1
  year: 2024
  end-page: 7
– start-page: 324
  year: 2024
  end-page: 329
– volume: 60
  start-page: 126
  issue: 2
  year: 2025
  end-page: 140
  article-title: The Role of Artificial Intelligence for Early Diagnostic Tools of Autism Spectrum Disorder: A Systematic Review
  publication-title: Turkish Archives of Pediatrics
– volume: 32
  start-page: 216
  issue: 1
  year: 2024
  end-page: 222
  article-title: Predictions of Diabetes Through Machine Learning Models Based on the Health Indicators Dataset
  publication-title: Applied and Computational Engineering
– volume: 2
  year: 2022
  article-title: An Assessment of Machine Learning Models and Algorithms for Early Prediction and Diagnosis of Diabetes Using Health Indicators
  publication-title: Healthcare Analytics
– volume: 15
  year: 2025
  article-title: Algorithmic and Mathematical Modeling for Synthetically Controlled Overlapping
  publication-title: Scientific Reports
– volume: 48
  start-page: S27
  year: 2025
  end-page: S49
  article-title: 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025
  publication-title: Diabetes Care
– volume: 11
  start-page: 58
  year: 2024
  end-page: 109
  article-title: Machine Learning and Deep Learning‐Based Approach in Smart Healthcare: Recent Advances , Applications , Challenges and Opportunities
  publication-title: AIMS Public Health
– volume: 10
  start-page: 1
  year: 2025
  end-page: 11
  article-title: IoT‐Driven Skin Cancer Detection: Active Learning and Hyperparameter Optimization for Enhanced Accuracy
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 7
  start-page: 530
  issue: 4
  year: 2019
  end-page: 535
  article-title: Type 2 Diabetes Data Classification Using Stacked Autoencoders in Deep Neural Networks
  publication-title: Clinical Epidemiology and Global Health
– year: 2025
– volume: 9
  start-page: 25070
  issue: 9
  year: 2024
  end-page: 25097
  article-title: Addressing Limitations of the K‐Means Clustering Algorithm: Outliers, Non‐Spherical Data, and Optimal Cluster Selection
  publication-title: AIMS Math
– year: 2023
– volume: 7
  year: 2025
  article-title: Machine Learning and Artificial Intelligence in Type 2 Diabetes Prediction: A Comprehensive 33‐Year Bibliometric and Literature Analysis
  publication-title: Frontiers in Digital Health
– year: 2021
  article-title: Edinburgh Research Explorer IDF Diabetes Atlas
  publication-title: Glob. Reg. country‐level diabetes Preval. Estim. 2021 Proj 2045
– volume: 34
  start-page: 1319
  issue: 2
  year: 2022
  end-page: 1327
  article-title: Deep Convolutional Neural Network for Diabetes Mellitus Prediction
  publication-title: Neural Computing & Applications
– start-page: 120
  year: 2023
  end-page: 125
– start-page: 1
  year: 2024
  end-page: 6
– volume: 13
  start-page: 146
  issue: 1
  year: 2021
  end-page: 149
  article-title: Classification of Diabetes Using Deep Learning and SVM Techniques
  publication-title: International Journal of Current Research and Review
– ident: e_1_2_10_25_1
  doi: 10.1126/science.1127647
– start-page: 1
  volume-title: Advances in Science and Engineering Technology International Conferences (ASET)
  year: 2024
  ident: e_1_2_10_18_1
– ident: e_1_2_10_21_1
  doi: 10.54254/2755‐2721/32/20230214
– ident: e_1_2_10_12_1
  doi: 10.1007/s10462‐023‐10466‐8
– ident: e_1_2_10_11_1
  doi: 10.1016/j.bspc.2024.106501
– ident: e_1_2_10_26_1
  doi: 10.1109/ICASSP40776.2020.9054412
– ident: e_1_2_10_27_1
  doi: 10.1016/j.cegh.2018.12.004
– ident: e_1_2_10_29_1
  doi: 10.1016/j.cmpb.2021.105968
– ident: e_1_2_10_30_1
  doi: 10.1038/srep26094
– ident: e_1_2_10_5_1
  doi: 10.1186/s13098‐021‐00767‐9
– ident: e_1_2_10_31_1
  doi: 10.1109/ICAIT61638.2024.10690358
– ident: e_1_2_10_36_1
– ident: e_1_2_10_8_1
  doi: 10.5152/TurkArchPediatr.2025.24183
– start-page: 1
  volume-title: 8th International Artificial Intelligence and Data Processing Symposium (IDAP)
  year: 2024
  ident: e_1_2_10_22_1
– ident: e_1_2_10_35_1
  doi: 10.1038/s41598‐025‐87992‐8
– ident: e_1_2_10_2_1
  doi: 10.1016/j.dscb.2024.100135
– ident: e_1_2_10_6_1
  doi: 10.3389/fdgth.2025.1557467
– ident: e_1_2_10_10_1
  doi: 10.1016/j.compbiomed.2024.108734
– ident: e_1_2_10_13_1
  doi: 10.1007/s10462-023-10662-6
– ident: e_1_2_10_16_1
  doi: 10.58445/rars.546
– ident: e_1_2_10_34_1
  doi: 10.3934/math.20241222
– ident: e_1_2_10_9_1
  doi: 10.3934/publichealth.2024004
– ident: e_1_2_10_7_1
  doi: 10.1186/s12916‐022‐02438‐6
– ident: e_1_2_10_14_1
– ident: e_1_2_10_15_1
  doi: 10.1109/JBHI.2025.3578419
– ident: e_1_2_10_4_1
  doi: 10.2337/dc25-S002
– start-page: 020011
  volume-title: AIP Conference Proceedings
  year: 2024
  ident: e_1_2_10_33_1
– ident: e_1_2_10_32_1
  doi: 10.31782/IJCRR.2021.13127
– ident: e_1_2_10_17_1
  doi: 10.1145/3615366.3615376
– ident: e_1_2_10_19_1
  doi: 10.1109/ICICoS62600.2024.10636871
– ident: e_1_2_10_38_1
  doi: 10.37934/ard.129.1.6074
– ident: e_1_2_10_24_1
  doi: 10.1016/j.health.2022.100118
– ident: e_1_2_10_37_1
  doi: 10.1007/s11063‐018‐9894‐5
– ident: e_1_2_10_3_1
  doi: 10.1016/j.diabres.2021.109119
– ident: e_1_2_10_23_1
  doi: 10.1109/ICCCNT61001.2024.10724390
– ident: e_1_2_10_20_1
  doi: 10.3390/app14052132
– ident: e_1_2_10_28_1
  doi: 10.1007/s00521‐021‐06431‐7
SSID ssj0002171030
Score 2.3087015
Snippet ABSTRACT Early and precise prediction of Type 2 diabetes is vital for effective intervention. However, extracting meaningful insights from high‐dimensional...
Early and precise prediction of Type 2 diabetes is vital for effective intervention. However, extracting meaningful insights from high‐dimensional datasets...
ABSTRACT Early and precise prediction of Type 2 diabetes is vital for effective intervention. However, extracting meaningful insights from high‐dimensional...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms autoencoder
hybrid model
machine learning models
sparse data
Type 2 diabetes prediction
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPOhBfGJ9saAnIbbZTXeTYyutPdTSg0pvYV8pgqQlbRVv_gR_o7_EmU0s9aIXTwkhsGG-nZlv2Mk3hFyapoojl4SBzmwjiHQILqUiHggdC9tsMid8V-VjXw4G8WiUDFdGfWFPWCkPXBqublwcMSWECUOvZZcoKzgHD40zZzjzOp8NmawUUxiDgWjj_KylHimru3zMrmF742z3lQzkhfp_ElOfWbo7ZLuihLRVfsouWXP5HtlaEQrcJ699oIT5nCJhWxTu8_2jDdnHUqwiKaNVW8uMDgs8d0FbU98LQBXtveE_WRRIJfgrXKdQyTraWswnKGFpXUFVbumd76l0tJJbHVOckfY8OyAP3c79TS-oRiYEhnMRB8A-VdY0qJnMY8HxkBXil46klSrUJpFGgVMnTGgOoU7yzBgpgRRYoVQkLOeHZD2f5O6IUGlFw3KgE5lmkYo0wMi4BgRUphi4fY1cfJsxnZbKGGmpgcxSNHbqjV0jbbTw8g1Us_YPAOO0wjj9C-MaufL4_LJO2hncMn93_B8rnpBNhoN-fTPZKVmfFwt3RjbMy_xpVpz7vfYFGonW3g
  priority: 102
  providerName: Directory of Open Access Journals
Title Latent Feature‐Based Type 2 Diabetes Prediction Using a Hybrid Stacked Sparse Autoencoder and Machine Learning Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70358
https://doaj.org/article/ce842a66c11744049ad6331118fec323
Volume 7
WOSCitedRecordID wos001585376600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: M7S
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: BENPR
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: PIMPY
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: WIN
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STQ_NoUlfZNMkCNpTwc1akiUbetmUzQPSZQ995Gb08lII3uDdTektP6G_Mb8kM1pn070EQi62MTIW89InafQNwEeXmVyGIk1s5XuJtCm6lJEiUTZXPst4UDGr8ueZHg7z8_NitAZf7s7CLPghlgtu5BkxXpODGzs9uCcNDfWYf0Z7zfJnsJ6mQpNNczlarrAg2KYaWlRdLtMYitHWlvyk_OD-85URKRL3rwLVONIcbT6tj1vwskWYrL8wiVewFurXsPEf7-Ab-HOGCLOeMcJ_8ybcXP87xMHMM5qUMs7aLJkpGzW0jUOqYzG1gBl28peOeDHEqOj-eL_EiXFg_flsQoyYPjTM1J59iymagbXsrWNGJdcupm_hx9Hg-9eTpK3AkDghVI4y86bKHFEwi1wJ2rPFcGil9tqk1hXaGYwRBVdWYOTUonJOaxS0V8ZI5YV4B516UodtYNqrnheITirLpZEWrYILK3vSVIZjFOnChzstlJcLoo1yQanMSxJjGcXYhUNS0LIFkWPHF5NmXLa-VrqQS26Ucmka6Q8L45UQGNTzKjjBRRc-RaU98J9yMDzm8WnnMY3fwwtO9YFjDtoudGbNPOzBc3c1-z1t9qN57sdZP15_nQ5vAc0f5_I
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61tFLh0AcFsdCHpXJCCmxsx06OUEG36rLaA0XcIr-yQkJZlN0FceMn8Bv5Jcx406VckKqeEkWOEs3jm7E9_gZg22Uml6FIE1v5biJtii5lpEiUzZXPMh5UrKo87evBID87K4ZtbQ6dhZnzQywW3MgzIl6Tg9OC9N4ja2ioR3wXDTbLX8IriWGJKvq4HC6WWDDbpiZa1F4u04jFaGwLglK-9_j6k5AUmfufZqox1By9-8-ffA9v2xyT7c-N4gO8CPUqrPzFPPgRrvuYY9ZTRhngrAn3t3cHGM48o2kp46ytk5mwYUMbOaQ8FosLmGG9GzrkxTBLRQDA6yVOjQPbn03HxInpQ8NM7dlxLNIMrOVvHTFqunYxWYPfR4cn33tJ24MhcUKoHIXmTZU5ImEWuRK0a4uAaKX22qTWFdoZRImCKysQO7WonNMaJe2VMVJ5IdZhqR7XYQOY9qrrBeYnleXSSIt2wYWVXWkqwxFHOvDtjxrKyznVRjknVeYlibGMYuzAAWloMYLoseODcTMqW28rXcglN0q5NI0EiIXxSgiE9bwKTnDRgZ2otWe-Ux4OfvB4t_kvg7_Cm97Jcb_s_xz82oJlTt2CY0XaJ1iaNrPwGV67q-n5pPkSbfUBqw3p0g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VWqH2QB9QEaDtSu2pkku8u961j7xSKkKUQ1txs_blqFLlRE5CxY2fwG_klzCzcUO5IKGebFlr2ZrHN7O7s98AfHKZyWUo0sRWvptIm6JLGSkSZXPls4wHFasqf_b1YJCfnxfDtjaHzsIs-CGWC27kGRGvycHDxFd7d6yhoR7xL2iwWb4CT2Wmo19yOVwusWC2TU20qL1cphGL0diWBKV87-71eyEpMvffz1RjqOm9_M-ffAXrbY7J9hdG8RqehPoNvPiHeXAD_vQxx6xnjDLAeRNurq4PMJx5RtNSxllbJzNlw4Y2ckh5LBYXMMNOLumQF8MsFQEArxOcGge2P5-NiRPTh4aZ2rOzWKQZWMvfOmLUdO33dBN-9I6_H54kbQ-GxAmhchSaN1XmiIRZ5ErQri0CopXaa5NaV2hnECUKrqxA7NSick5rlLRXxkjlhXgLq_W4DlvAtFddLzA_qSyXRlq0Cy6s7EpTGY440oGPf9VQThZUG-WCVJmXJMYyirEDB6Sh5Qiix44Pxs2obL2tdCGX3Cjl0jQSIBbGKyEQ1vMqOMFFBz5HrT3wnfJ48JXHu-3HDP4Aa8OjXtn_NjjdgeecmgXHgrRdWJ018_AOnrmL2a9p8z6a6i1VhOlN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Feature%E2%80%90Based+Type+2+Diabetes+Prediction+Using+a+Hybrid+Stacked+Sparse+Autoencoder+and+Machine+Learning+Models&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=Abdussamad&rft.au=Daud%2C+Hanita&rft.au=Sokkalingam%2C+Rajalingam&rft.au=Zubair%2C+Muhammad&rft.date=2025-09-01&rft.issn=2577-8196&rft.eissn=2577-8196&rft.volume=7&rft.issue=9&rft_id=info:doi/10.1002%2Feng2.70358&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eng2_70358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon