Energy landscape analysis for regulatory RNA finding using scalable distributed cyberinfrastructure

SUMMARY We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble of sampled structures is used to derive distributions of energies and base‐pair distances between two configurations. We identify structural...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 23; číslo 17; s. 2292 - 2304
Hlavní autoři: Kim, Joohyun, Huang, Wei, Maddineni, Sharath, Aboul-ela, Fareed, Jha, Shantenu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 10.12.2011
Témata:
ISSN:1532-0626, 1532-0634, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract SUMMARY We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble of sampled structures is used to derive distributions of energies and base‐pair distances between two configurations. We identify structural features that can be utilized for RNA gene finding. Characterization of the EL through BE sampling of secondary structures is computationally demanding and has multiple heterogeneous stages. We develop the Distributed Adaptive Runtime Environment to effectively address the computational requirements. Distributed Adaptive Runtime Environment is built upon an extensible and interoperable pilot‐job and supports the concurrent execution of a broad range of task sizes across a range of infrastructure. It is used to investigate two RNA systems of different sizes, S‐adenosyl methionine (SAM) binding RNA sequences known as SAM‐I riboswitches, and the S gene of the bovine corona virus RNA genome. We demonstrate how the implementation lowers the total time to solution for increases in RNA length, the number of sequences investigated, and the number of sampled structures. The distributions of energies and base‐pair distances reveal variations in folding dynamics and pathways among the SAM riboswitch sequences. Our results for BCoV RNA genome sequences also indicate sensitivity of folding to coding‐neutral variations in sequence. We search for a characteristic motif from within the SAM‐I consensus structure – a four‐way junction, among BE sampled structures for all 2910 SAM‐I sequences identified from Rfam (the curated ncRNA family database). We find that BE sampling provides insight into the variations in conformational distribution among sequences of the same ncRNA family. Therefore, BE sampling of secondary structures is a viable pre‐processing or post‐processing tool to complement comparative sequence analysis. The understanding gained shows how appropriately designed cyberinfrastructure can provide new insight into RNA folding and structure formation. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList Keywords: concurrent programming and distributed computing; Simple API for Grid Applications (SAGA); Pilot-Job abstraction; RNA folding energy landscape; ncRNA gene finding SUMMARY We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble of sampled structures is used to derive distributions of energies and base-pair distances between two configurations. We identify structural features that can be utilized for RNA gene finding. Characterization of the EL through BE sampling of secondary structures is computationally demanding and has multiple heterogeneous stages. We develop the Distributed Adaptive Runtime Environment to effectively address the computational requirements. Distributed Adaptive Runtime Environment is built upon an extensible and interoperable pilot-job and supports the concurrent execution of a broad range of task sizes across a range of infrastructure. It is used to investigate two RNA systems of different sizes, S-adenosyl methionine (SAM) binding RNA sequences known as SAM-I riboswitches, and the S gene of the bovine corona virus RNA genome. We demonstrate how the implementation lowers the total time to solution for increases in RNA length, the number of sequences investigated, and the number of sampled structures. The distributions of energies and base-pair distances reveal variations in folding dynamics and pathways among the SAM riboswitch sequences. Our results for BCoV RNA genome sequences also indicate sensitivity of folding to coding-neutral variations in sequence. We search for a characteristic motif from within the SAM-I consensus structure - a four-way junction, among BE sampled structures for all 2910 SAM-I sequences identified from Rfam (the curated ncRNA family database). We find that BE sampling provides insight into the variations in conformational distribution among sequences of the same ncRNA family. Therefore, BE sampling of secondary structures is a viable pre-processing or post-processing tool to complement comparative sequence analysis. The understanding gained shows how appropriately designed cyberinfrastructure can provide new insight into RNA folding and structure formation.
SUMMARY We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble of sampled structures is used to derive distributions of energies and base‐pair distances between two configurations. We identify structural features that can be utilized for RNA gene finding. Characterization of the EL through BE sampling of secondary structures is computationally demanding and has multiple heterogeneous stages. We develop the Distributed Adaptive Runtime Environment to effectively address the computational requirements. Distributed Adaptive Runtime Environment is built upon an extensible and interoperable pilot‐job and supports the concurrent execution of a broad range of task sizes across a range of infrastructure. It is used to investigate two RNA systems of different sizes, S‐adenosyl methionine (SAM) binding RNA sequences known as SAM‐I riboswitches, and the S gene of the bovine corona virus RNA genome. We demonstrate how the implementation lowers the total time to solution for increases in RNA length, the number of sequences investigated, and the number of sampled structures. The distributions of energies and base‐pair distances reveal variations in folding dynamics and pathways among the SAM riboswitch sequences. Our results for BCoV RNA genome sequences also indicate sensitivity of folding to coding‐neutral variations in sequence. We search for a characteristic motif from within the SAM‐I consensus structure – a four‐way junction, among BE sampled structures for all 2910 SAM‐I sequences identified from Rfam (the curated ncRNA family database). We find that BE sampling provides insight into the variations in conformational distribution among sequences of the same ncRNA family. Therefore, BE sampling of secondary structures is a viable pre‐processing or post‐processing tool to complement comparative sequence analysis. The understanding gained shows how appropriately designed cyberinfrastructure can provide new insight into RNA folding and structure formation. Copyright © 2011 John Wiley & Sons, Ltd.
We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble of sampled structures is used to derive distributions of energies and base‐pair distances between two configurations. We identify structural features that can be utilized for RNA gene finding. Characterization of the EL through BE sampling of secondary structures is computationally demanding and has multiple heterogeneous stages. We develop the Distributed Adaptive Runtime Environment to effectively address the computational requirements. Distributed Adaptive Runtime Environment is built upon an extensible and interoperable pilot‐job and supports the concurrent execution of a broad range of task sizes across a range of infrastructure. It is used to investigate two RNA systems of different sizes, S‐adenosyl methionine (SAM) binding RNA sequences known as SAM‐I riboswitches, and the S gene of the bovine corona virus RNA genome. We demonstrate how the implementation lowers the total time to solution for increases in RNA length, the number of sequences investigated, and the number of sampled structures. The distributions of energies and base‐pair distances reveal variations in folding dynamics and pathways among the SAM riboswitch sequences. Our results for BCoV RNA genome sequences also indicate sensitivity of folding to coding‐neutral variations in sequence. We search for a characteristic motif from within the SAM‐I consensus structure – a four‐way junction, among BE sampled structures for all 2910 SAM‐I sequences identified from Rfam (the curated ncRNA family database). We find that BE sampling provides insight into the variations in conformational distribution among sequences of the same ncRNA family. Therefore, BE sampling of secondary structures is a viable pre‐processing or post‐processing tool to complement comparative sequence analysis. The understanding gained shows how appropriately designed cyberinfrastructure can provide new insight into RNA folding and structure formation. Copyright © 2011 John Wiley & Sons, Ltd.
Author Kim, Joohyun
Maddineni, Sharath
Aboul-ela, Fareed
Jha, Shantenu
Huang, Wei
Author_xml – sequence: 1
  givenname: Joohyun
  surname: Kim
  fullname: Kim, Joohyun
  email: jhkim@cct.lsu.edu, Joohyun Kim and Shantenu Jha, Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA. , jhkim@cct.lsu.edusjha@cct.lsu.edu
  organization: Center for Computation & Technology, Louisiana State University, LA, 70803, Baton Rouge, USA
– sequence: 2
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  organization: Department of Biological Sciences, Louisiana State University, LA, 70803, Baton Rouge, USA
– sequence: 3
  givenname: Sharath
  surname: Maddineni
  fullname: Maddineni, Sharath
  organization: Center for Computation & Technology, Louisiana State University, LA, 70803, Baton Rouge, USA
– sequence: 4
  givenname: Fareed
  surname: Aboul-ela
  fullname: Aboul-ela, Fareed
  organization: Department of Biological Sciences, Louisiana State University, LA, 70803, Baton Rouge, USA
– sequence: 5
  givenname: Shantenu
  surname: Jha
  fullname: Jha, Shantenu
  email: sjha@cct.lsu.edu, Joohyun Kim and Shantenu Jha, Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA. , jhkim@cct.lsu.edusjha@cct.lsu.edu
  organization: Center for Computation & Technology, Louisiana State University, LA, 70803, Baton Rouge, USA
BookMark eNp10N9r2zAQB3AxWlh_wf4EPe7FqU6y5fixy7J2o6SlbHRv4iKdgzZVziSb1f_9HDIyCuuLThyfO7jvKTuKXSTG3oGYgRDy0m5pBnWj37ATqJQshFbl0eEv9Vt2mvMPIQCEghNml5HSZuQBo8sWt8QxYhizz7ztEk-0GQL2XRr5w-qKtz46Hzd8yLt38gHXgbjzuU9-PfTkuB3XlHxsE069wfZDonN23GLIdPG3nrFvn5ZfFzfF7d3158XVbWGV0rqwUlJNUEmsLVatU9bJBtDOG9BOSqnbEpsS2jkK4aYCUM7BuUqWoiRoQJ2x9_u929T9Gij35slnS2G6jbohGxBSzJUGXU10tqc2dTknao31Pfa-i31CHyZqdmmaKU2zS_Pf7sPANvknTOP_aLGnv32g8VVnFvfLl35KkZ4PHtNPo2tVV-ZxdW1WcqG_fPzw3Sj1B9eJlc0
CitedBy_id crossref_primary_10_1261_rna_032177_111
crossref_primary_10_1007_s10723_012_9244_1
crossref_primary_10_1002_wrna_1300
crossref_primary_10_1002_cpe_3301
crossref_primary_10_1016_j_jmb_2012_02_019
crossref_primary_10_1002_cpe_1862
Cites_doi 10.1021/ja0771641
10.1093/nar/1.7.927
10.1146/annurev.biophys.37.032807.130000
10.1186/1471-2105-11-129
10.1109/CloudCom.2010.85
10.1038/nature08717
10.1021/ja8026696
10.1038/nrg2172
10.1098/rsta.2009.0051
10.1126/science.1155472
10.1016/j.cbpa.2008.09.017
10.1007/BF00205808
10.1109/CCGRID.2010.107
10.1016/j.sbi.2006.05.010
10.1093/nar/gkp664
10.1016/j.cell.2009.02.003
10.1093/bioinformatics/btp157
10.1016/j.mib.2009.01.012
10.1038/nature08403
10.1007/BF02705184
10.1128/JB.01034-07
10.1109/CCGRID.2010.91
10.1002/bip.360290621
10.1016/S0968-0004(03)00066-5
10.1016/S0006-3495(92)81649-1
10.1099/0022-1317-82-12-2927
10.1093/nar/gkn188
10.1016/j.sbi.2007.03.001
10.1146/annurev.physchem.48.1.545
10.1073/pnas.97.2.646
10.1093/nar/gkg938
10.1038/nature04819
10.1111/j.1749-6632.2009.04991.x
10.1093/nar/gkh449
10.1261/rna.2274106
10.1145/1851476.1851546
10.1016/j.str.2010.04.006
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TM
DOI 10.1002/cpe.1796
DatabaseName Istex
CrossRef
Nucleic Acids Abstracts
DatabaseTitle CrossRef
Nucleic Acids Abstracts
DatabaseTitleList Nucleic Acids Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage 2304
ExternalDocumentID 10_1002_cpe_1796
CPE1796
ark_67375_WNG_N2C6JDBX_3
Genre article
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
O8X
7TM
ID FETCH-LOGICAL-c3366-c22e7e152a7ca5fd3cd291ac8916d2226f4a941f8a00d1f811481dd52404e1913
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297145100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
1532-0634
IngestDate Mon Sep 29 06:39:14 EDT 2025
Sat Nov 29 01:41:11 EST 2025
Tue Nov 18 22:28:47 EST 2025
Wed Jan 22 16:33:03 EST 2025
Sun Sep 21 06:17:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3366-c22e7e152a7ca5fd3cd291ac8916d2226f4a941f8a00d1f811481dd52404e1913
Notes ark:/67375/WNG-N2C6JDBX-3
istex:C06975D57FCA7300C0DE70650D16AFE0922E3B1C
ArticleID:CPE1796
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1020836165
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1020836165
crossref_citationtrail_10_1002_cpe_1796
crossref_primary_10_1002_cpe_1796
wiley_primary_10_1002_cpe_1796_CPE1796
istex_primary_ark_67375_WNG_N2C6JDBX_3
PublicationCentury 2000
PublicationDate 2011-12-10
10 December 2011
20111210
PublicationDateYYYYMMDD 2011-12-10
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-10
  day: 10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Concurrency and computation
PublicationTitleAlternate Concurrency Computat.: Pract. Exper
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Ding Y, Chan CY, et al. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Research 2004; 32:W135-W141.
Wolynes PG. Landscape, funnels, glasses, and folding: from metaphor to software. Proceedings of American Philosophical Society 2001; 145(4):555-563.
Onuchic JN, Wolynes PG. Theory of protein folding: the energy landscape perspective. Annual Review of Physical Chemistry 1997; 48:543-600.
Cupal J, Flamm C, et al. Density of states, metastable states, and saddle points exploring the energy landscape of an RNA molecule. Proc Int Conf Intell Syst Mol Biol 1997; 5:88-91.
Ding Y. Statistical and Bayesian approaches to RNA secondary structure prediction. RNA 2006; 12(3):323-331.
Ding Y, Lawrence CE. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 2003; 31:7280-7301.
Luckow A, Jha Set al.Adaptive distributed replica-exchange simulations. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences 2009; 367(1897):2595-2606.
Shcherbakova I, Mitra S, et al. Energy barriers, pathways and dynamics during folding of large, multi-domain RNAs. Current Opinion in Chemical Biology 2008; 12(6):655-666.
Mattick JS. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Annals of the New York Academy of Sciences 2009; 1178:29-46.
Shapiro BA, Yingling YG, et al. Bridging the gap in RNA structure prediction. Current Opinion in Structural Biology 2007; 17:157-165.
Serganov A, Patel DJ. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nature Review Genetics 2007; 8:776-790.
Chouljenko VN, Lin XQ, et al. Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia. Journal of General Virology 2001; 82:2927-2933.
Schmeing TM, Ramakrishnan V. What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-1242.
Collier AJ, Gallego J, et al. A conserved RNA structure within the HCV IRES elF3-binding site. Nature Structure and Molecular Biology 2002; 9(5):375-380.
Berman HM, Olson WK, et al. The nucleic acid database: a comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical Journal 1992; 63:751-759.
Stoddard CD, Montange RK, et al. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 2010; 18:787-797.
Amaral PP, Dinger ME, et al. The eukaryotic genome as an RNA machine. Science 2008; 319:1787-1789.
Huang W, Kim J, et al. A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm. Nucleic Acids Research 2009; 37(19):6528-6539.
McCaskill JS. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 1990; 29:1105-1119.
Kennedy SD, Mathews DH, et al. NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. Journal of the American Chemical Society 2008; 130:10233-10239.
Bonhoeffer S, McCaskill JS, et al. RNA multi-structure landscapes: a study based on temperature partition functions. European Biophyics Journal 1993; 22:13-24.
Clark BFC. The crystal structure of tRNA. Journal of Biosciences 2006; 31(4):453-457.
Chen S, Dill KA. RNA folding energy landscapes. Proceedings of the National Academy of Science, USA 2000; 97(2):646-651.
Montange RK, Mondragón E, et al. Discrimination between closely related cellular metabolites by the SAM-I riboswitch. Journal of Molecular Biology 2009. available online.
Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11: 129.
Montange RK, Batey RT. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 2006; 441:1172-1175.
Robertus JD, Ladner JE, et al. Correlation between three-dimensional structure and chemical reactivity of transfer RNA. Nucleir Acids Research 1974; 1(7):927-932.
Ogle JM, Carter AP, et al. Insights into the decoding mechanism from recent ribosome structures. Trends in Biochemical Sciences 2005; 28:259-266.
Montange RK, Batey RT. Riboswitches: emerging themes in RNA structure and function. Annual Review of Biophysics 2008; 37:117-133.
Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Current Opinion in Structural Biology 2006; 16(3):270-278.
Nawrocki EP, Kolbe DL, et al. Infernal 1.0: inference of RNA alignments. Bioinformatics 2009; 25:1335-1337.
Tomsic J, McDaniel BA, et al. Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-Box elements in Bacillus subtilis exhibit differential sensitivity to SAM in vivo and in vitro. Journal of Bacteriology 2008; 190:823-833.
Cruz JA, Westhof E. The dynamic landscapes of RNA architecture. Cell 2009; 136:604-609.
Hyeon C, Thirumalai D. Multiple Probes are required to explore and control the rugged energy landscape of RNA hairpins. Journal of the American Chemical Society 2008; 130:1538-1539.
Dambach MD, Winkler WC. Expanding roles for metabolite-sensing regulatory RNAs. Current Opinion in Microbiology 2009; 12:161-169.
Gruber AR, Lorenz R et al. The Vienna RNA websuite. Nucleir Acids Research 2008; 36: W70-W74.
Solomatin S, Greenfeld M, et al. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 2010; 463:681-684.
2007; 17
2010; 11
2009; 25
2008; 190
2001; 145
2006; 31
2002; 9
2006; 12
2010
2010; 18
1997; 48
1993; 22
2006; 16
2009
2008; 36
2008; 37
2010; 463
1974; 1
2008; 12
1997; 5
2005; 28
2009; 136
2003; 31
1999
2009; 12
2004; 32
2001; 82
1990; 29
2008; 319
2000; 97
2007; 8
2009; 461
2008; 130
2009; 367
2009; 1178
2009; 37
2006; 441
1992; 63
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Cupal J (e_1_2_7_21_1) 1997; 5
Collier AJ (e_1_2_7_9_1) 2002; 9
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
Wolynes PG (e_1_2_7_20_1) 2001; 145
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Montange RK (e_1_2_7_39_1) 2009
References_xml – reference: Montange RK, Mondragón E, et al. Discrimination between closely related cellular metabolites by the SAM-I riboswitch. Journal of Molecular Biology 2009. available online.
– reference: Robertus JD, Ladner JE, et al. Correlation between three-dimensional structure and chemical reactivity of transfer RNA. Nucleir Acids Research 1974; 1(7):927-932.
– reference: Chen S, Dill KA. RNA folding energy landscapes. Proceedings of the National Academy of Science, USA 2000; 97(2):646-651.
– reference: Ogle JM, Carter AP, et al. Insights into the decoding mechanism from recent ribosome structures. Trends in Biochemical Sciences 2005; 28:259-266.
– reference: Shcherbakova I, Mitra S, et al. Energy barriers, pathways and dynamics during folding of large, multi-domain RNAs. Current Opinion in Chemical Biology 2008; 12(6):655-666.
– reference: Collier AJ, Gallego J, et al. A conserved RNA structure within the HCV IRES elF3-binding site. Nature Structure and Molecular Biology 2002; 9(5):375-380.
– reference: Schmeing TM, Ramakrishnan V. What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-1242.
– reference: McCaskill JS. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 1990; 29:1105-1119.
– reference: Amaral PP, Dinger ME, et al. The eukaryotic genome as an RNA machine. Science 2008; 319:1787-1789.
– reference: Nawrocki EP, Kolbe DL, et al. Infernal 1.0: inference of RNA alignments. Bioinformatics 2009; 25:1335-1337.
– reference: Luckow A, Jha Set al.Adaptive distributed replica-exchange simulations. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences 2009; 367(1897):2595-2606.
– reference: Dambach MD, Winkler WC. Expanding roles for metabolite-sensing regulatory RNAs. Current Opinion in Microbiology 2009; 12:161-169.
– reference: Montange RK, Batey RT. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 2006; 441:1172-1175.
– reference: Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Current Opinion in Structural Biology 2006; 16(3):270-278.
– reference: Gruber AR, Lorenz R et al. The Vienna RNA websuite. Nucleir Acids Research 2008; 36: W70-W74.
– reference: Berman HM, Olson WK, et al. The nucleic acid database: a comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical Journal 1992; 63:751-759.
– reference: Hyeon C, Thirumalai D. Multiple Probes are required to explore and control the rugged energy landscape of RNA hairpins. Journal of the American Chemical Society 2008; 130:1538-1539.
– reference: Wolynes PG. Landscape, funnels, glasses, and folding: from metaphor to software. Proceedings of American Philosophical Society 2001; 145(4):555-563.
– reference: Shapiro BA, Yingling YG, et al. Bridging the gap in RNA structure prediction. Current Opinion in Structural Biology 2007; 17:157-165.
– reference: Kennedy SD, Mathews DH, et al. NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. Journal of the American Chemical Society 2008; 130:10233-10239.
– reference: Clark BFC. The crystal structure of tRNA. Journal of Biosciences 2006; 31(4):453-457.
– reference: Solomatin S, Greenfeld M, et al. Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 2010; 463:681-684.
– reference: Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11: 129.
– reference: Huang W, Kim J, et al. A mechanism for S-adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm. Nucleic Acids Research 2009; 37(19):6528-6539.
– reference: Ding Y, Chan CY, et al. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Research 2004; 32:W135-W141.
– reference: Onuchic JN, Wolynes PG. Theory of protein folding: the energy landscape perspective. Annual Review of Physical Chemistry 1997; 48:543-600.
– reference: Bonhoeffer S, McCaskill JS, et al. RNA multi-structure landscapes: a study based on temperature partition functions. European Biophyics Journal 1993; 22:13-24.
– reference: Tomsic J, McDaniel BA, et al. Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-Box elements in Bacillus subtilis exhibit differential sensitivity to SAM in vivo and in vitro. Journal of Bacteriology 2008; 190:823-833.
– reference: Ding Y. Statistical and Bayesian approaches to RNA secondary structure prediction. RNA 2006; 12(3):323-331.
– reference: Stoddard CD, Montange RK, et al. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 2010; 18:787-797.
– reference: Montange RK, Batey RT. Riboswitches: emerging themes in RNA structure and function. Annual Review of Biophysics 2008; 37:117-133.
– reference: Chouljenko VN, Lin XQ, et al. Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia. Journal of General Virology 2001; 82:2927-2933.
– reference: Serganov A, Patel DJ. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nature Review Genetics 2007; 8:776-790.
– reference: Mattick JS. Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms. Annals of the New York Academy of Sciences 2009; 1178:29-46.
– reference: Cruz JA, Westhof E. The dynamic landscapes of RNA architecture. Cell 2009; 136:604-609.
– reference: Ding Y, Lawrence CE. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 2003; 31:7280-7301.
– reference: Cupal J, Flamm C, et al. Density of states, metastable states, and saddle points exploring the energy landscape of an RNA molecule. Proc Int Conf Intell Syst Mol Biol 1997; 5:88-91.
– volume: 441
  start-page: 1172
  year: 2006
  end-page: 1175
  article-title: Structure of the S‐adenosylmethionine riboswitch regulatory mRNA element
  publication-title: Nature
– volume: 130
  start-page: 10233
  year: 2008
  end-page: 10239
  article-title: NMR‐assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon
  publication-title: Journal of the American Chemical Society
– volume: 136
  start-page: 604
  year: 2009
  end-page: 609
  article-title: The dynamic landscapes of RNA architecture
  publication-title: Cell
– volume: 9
  start-page: 375
  issue: 5
  year: 2002
  end-page: 380
  article-title: A conserved RNA structure within the HCV IRES elF3‐binding site
  publication-title: Nature Structure and Molecular Biology
– volume: 97
  start-page: 646
  issue: 2
  year: 2000
  end-page: 651
  article-title: RNA folding energy landscapes
  publication-title: Proceedings of the National Academy of Science, USA
– volume: 22
  start-page: 13
  year: 1993
  end-page: 24
  article-title: RNA multi‐structure landscapes: a study based on temperature partition functions
  publication-title: European Biophyics Journal
– volume: 36
  start-page: W70
  year: 2008
  end-page: W74
  article-title: The Vienna RNA websuite
  publication-title: Nucleir Acids Research
– volume: 8
  start-page: 776
  year: 2007
  end-page: 790
  article-title: Ribozymes, riboswitches and beyond: regulation of gene expression without proteins
  publication-title: Nature Review Genetics
– volume: 12
  start-page: 323
  issue: 3
  year: 2006
  end-page: 331
  article-title: Statistical and Bayesian approaches to RNA secondary structure prediction
  publication-title: RNA
– volume: 367
  start-page: 2595
  issue: 1897
  year: 2009
  end-page: 2606
  article-title: .Adaptive distributed replica‐exchange simulations
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences
– volume: 16
  start-page: 270
  issue: 3
  year: 2006
  end-page: 278
  article-title: Prediction of RNA secondary structure by free energy minimization
  publication-title: Current Opinion in Structural Biology
– volume: 12
  start-page: 161
  year: 2009
  end-page: 169
  article-title: Expanding roles for metabolite‐sensing regulatory RNAs
  publication-title: Current Opinion in Microbiology
– volume: 63
  start-page: 751
  year: 1992
  end-page: 759
  article-title: The nucleic acid database: a comprehensive relational database of three‐dimensional structures of nucleic acids
  publication-title: Biophysical Journal
– volume: 461
  start-page: 1234
  year: 2009
  end-page: 1242
  article-title: What recent ribosome structures have revealed about the mechanism of translation
  publication-title: Nature
– volume: 130
  start-page: 1538
  year: 2008
  end-page: 1539
  article-title: Multiple Probes are required to explore and control the rugged energy landscape of RNA hairpins
  publication-title: Journal of the American Chemical Society
– year: 2009
  article-title: Discrimination between closely related cellular metabolites by the SAM‐I riboswitch
  publication-title: Journal of Molecular Biology
– volume: 37
  start-page: 117
  year: 2008
  end-page: 133
  article-title: Riboswitches: emerging themes in RNA structure and function
  publication-title: Annual Review of Biophysics
– volume: 463
  start-page: 681
  year: 2010
  end-page: 684
  article-title: Multiple native states reveal persistent ruggedness of an RNA folding landscape
  publication-title: Nature
– volume: 37
  start-page: 6528
  issue: 19
  year: 2009
  end-page: 6539
  article-title: A mechanism for S‐adenosyl methionine assisted formation of a riboswitch conformation: a small molecule with a strong arm
  publication-title: Nucleic Acids Research
– volume: 32
  start-page: W135
  year: 2004
  end-page: W141
  article-title: Sfold web server for statistical folding and rational design of nucleic acids
  publication-title: Nucleic Acids Research
– volume: 28
  start-page: 259
  year: 2005
  end-page: 266
  article-title: Insights into the decoding mechanism from recent ribosome structures
  publication-title: Trends in Biochemical Sciences
– volume: 31
  start-page: 453
  issue: 4
  year: 2006
  end-page: 457
  article-title: The crystal structure of tRNA
  publication-title: Journal of Biosciences
– volume: 17
  start-page: 157
  year: 2007
  end-page: 165
  article-title: Bridging the gap in RNA structure prediction
  publication-title: Current Opinion in Structural Biology
– volume: 48
  start-page: 543
  year: 1997
  end-page: 600
  article-title: Theory of protein folding: the energy landscape perspective
  publication-title: Annual Review of Physical Chemistry
– year: 2010
– volume: 5
  start-page: 88
  year: 1997
  end-page: 91
  article-title: Density of states, metastable states, and saddle points exploring the energy landscape of an RNA molecule
  publication-title: Proc Int Conf Intell Syst Mol Biol
– volume: 319
  start-page: 1787
  year: 2008
  end-page: 1789
  article-title: The eukaryotic genome as an RNA machine
  publication-title: Science
– volume: 145
  start-page: 555
  issue: 4
  year: 2001
  end-page: 563
  article-title: Landscape, funnels, glasses, and folding: from metaphor to software
  publication-title: Proceedings of American Philosophical Society
– volume: 82
  start-page: 2927
  year: 2001
  end-page: 2933
  article-title: Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia
  publication-title: Journal of General Virology
– volume: 190
  start-page: 823
  year: 2008
  end-page: 833
  article-title: Natural variability in S‐adenosylmethionine (SAM)‐dependent riboswitches: S‐Box elements in Bacillus subtilis exhibit differential sensitivity to SAM and
  publication-title: Journal of Bacteriology
– volume: 12
  start-page: 655
  issue: 6
  year: 2008
  end-page: 666
  article-title: Energy barriers, pathways and dynamics during folding of large, multi‐domain RNAs
  publication-title: Current Opinion in Chemical Biology
– volume: 1
  start-page: 927
  issue: 7
  year: 1974
  end-page: 932
  article-title: Correlation between three‐dimensional structure and chemical reactivity of transfer RNA
  publication-title: Nucleir Acids Research
– volume: 25
  start-page: 1335
  year: 2009
  end-page: 1337
  article-title: Infernal 1.0: inference of RNA alignments
  publication-title: Bioinformatics
– volume: 18
  start-page: 787
  year: 2010
  end-page: 797
  article-title: Free state conformational sampling of the SAM‐I riboswitch aptamer domain
  publication-title: Structure
– volume: 1178
  start-page: 29
  year: 2009
  end-page: 46
  article-title: Deconstructing the dogma: a new view of the evolution and genetic programming of complex organisms
  publication-title: Annals of the New York Academy of Sciences
– volume: 29
  start-page: 1105
  year: 1990
  end-page: 1119
  article-title: The equilibrium partition function and base pair binding probabilities for RNA secondary structure
  publication-title: Biopolymers
– volume: 11
  start-page: 129
  year: 2010
  article-title: RNAstructure: software for RNA secondary structure prediction and analysis
  publication-title: BMC Bioinformatics
– year: 1999
– volume: 31
  start-page: 7280
  year: 2003
  end-page: 7301
  article-title: A statistical sampling algorithm for RNA secondary structure prediction
  publication-title: Nucleic Acids Res.
– ident: e_1_2_7_14_1
  doi: 10.1021/ja0771641
– ident: e_1_2_7_12_1
  doi: 10.1093/nar/1.7.927
– ident: e_1_2_7_18_1
  doi: 10.1146/annurev.biophys.37.032807.130000
– ident: e_1_2_7_45_1
  doi: 10.1186/1471-2105-11-129
– ident: e_1_2_7_32_1
  doi: 10.1109/CloudCom.2010.85
– volume: 9
  start-page: 375
  issue: 5
  year: 2002
  ident: e_1_2_7_9_1
  article-title: A conserved RNA structure within the HCV IRES elF3‐binding site
  publication-title: Nature Structure and Molecular Biology
– ident: e_1_2_7_23_1
  doi: 10.1038/nature08717
– ident: e_1_2_7_8_1
  doi: 10.1021/ja8026696
– ident: e_1_2_7_29_1
– ident: e_1_2_7_2_1
  doi: 10.1038/nrg2172
– ident: e_1_2_7_3_1
– ident: e_1_2_7_30_1
  doi: 10.1098/rsta.2009.0051
– ident: e_1_2_7_5_1
  doi: 10.1126/science.1155472
– ident: e_1_2_7_15_1
  doi: 10.1016/j.cbpa.2008.09.017
– ident: e_1_2_7_24_1
  doi: 10.1007/BF00205808
– ident: e_1_2_7_42_1
  doi: 10.1109/CCGRID.2010.107
– ident: e_1_2_7_33_1
– ident: e_1_2_7_35_1
  doi: 10.1016/j.sbi.2006.05.010
– volume: 5
  start-page: 88
  year: 1997
  ident: e_1_2_7_21_1
  article-title: Density of states, metastable states, and saddle points exploring the energy landscape of an RNA molecule
  publication-title: Proc Int Conf Intell Syst Mol Biol
– ident: e_1_2_7_26_1
  doi: 10.1093/nar/gkp664
– year: 2009
  ident: e_1_2_7_39_1
  article-title: Discrimination between closely related cellular metabolites by the SAM‐I riboswitch
  publication-title: Journal of Molecular Biology
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cell.2009.02.003
– ident: e_1_2_7_25_1
  doi: 10.1093/bioinformatics/btp157
– ident: e_1_2_7_17_1
  doi: 10.1016/j.mib.2009.01.012
– ident: e_1_2_7_13_1
  doi: 10.1038/nature08403
– ident: e_1_2_7_11_1
  doi: 10.1007/BF02705184
– volume: 145
  start-page: 555
  issue: 4
  year: 2001
  ident: e_1_2_7_20_1
  article-title: Landscape, funnels, glasses, and folding: from metaphor to software
  publication-title: Proceedings of American Philosophical Society
– ident: e_1_2_7_27_1
  doi: 10.1128/JB.01034-07
– ident: e_1_2_7_31_1
  doi: 10.1109/CCGRID.2010.91
– ident: e_1_2_7_34_1
  doi: 10.1002/bip.360290621
– ident: e_1_2_7_10_1
  doi: 10.1016/S0968-0004(03)00066-5
– ident: e_1_2_7_7_1
  doi: 10.1016/S0006-3495(92)81649-1
– ident: e_1_2_7_43_1
– ident: e_1_2_7_28_1
  doi: 10.1099/0022-1317-82-12-2927
– ident: e_1_2_7_46_1
  doi: 10.1093/nar/gkn188
– ident: e_1_2_7_6_1
  doi: 10.1016/j.sbi.2007.03.001
– ident: e_1_2_7_19_1
  doi: 10.1146/annurev.physchem.48.1.545
– ident: e_1_2_7_22_1
  doi: 10.1073/pnas.97.2.646
– ident: e_1_2_7_40_1
  doi: 10.1093/nar/gkg938
– ident: e_1_2_7_38_1
  doi: 10.1038/nature04819
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1749-6632.2009.04991.x
– ident: e_1_2_7_37_1
  doi: 10.1093/nar/gkh449
– ident: e_1_2_7_36_1
  doi: 10.1261/rna.2274106
– ident: e_1_2_7_41_1
  doi: 10.1145/1851476.1851546
– ident: e_1_2_7_44_1
  doi: 10.1016/j.str.2010.04.006
SSID ssj0011031
Score 1.9498338
Snippet SUMMARY We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble...
We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble of...
Keywords: concurrent programming and distributed computing; Simple API for Grid Applications (SAGA); Pilot-Job abstraction; RNA folding energy landscape; ncRNA...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2292
SubjectTerms concurrent programming and distributed computing
ncRNA gene finding
Pilot-Job abstraction
RNA folding energy landscape
Simple API for Grid Applications (SAGA)
Title Energy landscape analysis for regulatory RNA finding using scalable distributed cyberinfrastructure
URI https://api.istex.fr/ark:/67375/WNG-N2C6JDBX-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.1796
https://www.proquest.com/docview/1020836165
Volume 23
WOSCitedRecordID wos000297145100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBbtbg-9NH2STR-oUNKTG1uWHzpu9pEQilmWLN2bkGUphCzexdsNyb_PjPxIF1oo5OTLWDaaGc8nS_N9hHxjJkqtiJknlOUej3ztCSgEHkttDtU3NbFRTmwiybJ0uRSz5lQl9sLU_BDdDzfMDPe9xgRX-fbkkTRUb8wPiKb4OekzCFveI_3xfLr42e0hoIBBzZbKPB9we0s967OT9t69YtTHeb3bQ5p_4lVXcKYHT3nV1-RVAzPpsI6LN-SZKd-Sg1bCgTYZ_Y7oiev9o67jF89CUdWwlFBAs7SqlerX1T2dZ0PqNrjLK4qH5a8o2K-w8YoWSL6LulmmoPo-x4ZCW6mamXZXmfdkMZ1cjs69RnfB02EYx55mzCQGCrtKtIpsEeqCiUDpFKBkAXgitlwJHthU-X4BF1xSBUURATjgBtZ_4QfSK9elOSTUJFyzXGhhNefKZ3lobGiEBksuuMoH5HvrAKkbUnLUxljJmk6ZSZg7iXM3IF87y01NxPEXm2Pnw85AVTd4cC2J5K_sTGZsFF-MT5cyhMFaJ0tIJ9wjUaVZ77YwHkO-7iCOYDDn038-TY5mE7we_a_hR_IS4JaTPQr8T6QHbjCfyQt9-_t6W31pwvcBBu30cA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R3UrlUugDQQutkar2lJI4zsPqCZbd8thGCIG6N8txbFQVZVEoVfn3nXGSpUhFqtSTLxMn8sxkPns83wC84zbJnUx5ILUTgUhCE0gMBAHPXYnRN7ep1b7ZRFYU-WwmT5bgU18L0_JDLA7cyDP8_5ocnA6kd-5YQ82V_YjmlD6CoUArSgYw3D-dnE8XSQTqYNDSpfIgRODec8-GfKd_9l40GtLC_roHNf8ErD7iTFb-61tX4WkHNNluaxnPYMnWz2Glb-LAOp9-AWbsq_-Yr_ml21BMdzwlDPEsa9pe9fPmlp0Wu8ynuOsLRtflLxjKX1LpFauIfpc6Z9mKmduSSgpdo1tu2pvGvoTzyfhsdBB0nRcCE8dpGhjObWYxtOvM6MRVsam4jLTJEUxWiChSJ7QUkct1GFY40KYqqqoE4YGwuAOM12BQz2u7DsxmwvBSGumMEDrkZWxdbKVBSSGFLjfgQ68BZTpacuqOcalaQmWucO0Urd0GbC8kr1oqjr_IvPdKXAjo5jtdXcsS9bX4rAo-So_292Yqxsl6LSt0KMqS6NrOb65xPk6M3VGa4GReqQ--TY1OxjS--lfBt_Dk4OzLVE0Pi-PXsOzPpyOOoXATBqgSuwWPzc8f366bN50t_waiefhb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB7SbCl5SdKLnK0KpX1yY8uybJGnZI9ewSyhofsmZB2hJHgXJynNv89ItrcNtBDok17GstFoPJ-O-T6At9RmhROcRkI5FrEs1pHARBDRwlWYfQvLrQpiE3lZFrOZmK7AYV8L0_JDLDfcfGSE_7UPcLsw7uA3a6he2A84nfgjGLBMcIzKweh0cnayPETwCgYtXSqNYgTuPfdsTA_6Z-9lo4Ef2F_3oOafgDVknMnGf33rJqx3QJMctTPjKazY-hls9CIOpIvp56DHofqPhJpffxuKqI6nhCCeJU2rVT9vbslpeUTCEXd9Tvx1-XOC9pe-9IoYT7_rlbOsIfq28iWFrlEtN-1NY1_A2WT8bfgp6pQXIp2mnEeaUptbTO0q1ypzJtWGikTpAsGkQUTBHVOCJa5QcWyw8YuqxJgM4QGzuAJMX8JqPa_tFhCbM00roYXTjKmYVql1qRUaLZlgqtqG970HpO5oyb06xqVsCZWpxLGTfuy24c3SctFScfzF5l1w4tJANRf-6lqeye_lR1nSIf8yOp7JFDvrvSwxoPwpiart_OYK-6OesTvhGXYWnPrPt8nhdOzbnYcavoYn09FEnnwuv-7CWtieTihmwj1YRY_YfXisf17_uGpedVP5DjnX99Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+landscape+analysis+for+regulatory+RNA+finding+using+scalable+distributed+cyberinfrastructure&rft.jtitle=Concurrency+and+computation&rft.au=Kim%2C+Joohyun&rft.au=Huang%2C+Wei&rft.au=Maddineni%2C+Sharath&rft.au=Aboul%E2%80%90ela%2C+Fareed&rft.date=2011-12-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=23&rft.issue=17&rft.spage=2292&rft.epage=2304&rft_id=info:doi/10.1002%2Fcpe.1796&rft.externalDBID=10.1002%252Fcpe.1796&rft.externalDocID=CPE1796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon