From Therapeutic Drug Monitoring to Model‐Informed Precision Dosing for Antibiotics

Therapeutic drug monitoring (TDM) and model‐informed precision dosing (MIPD) have evolved as important tools to inform rational dosing of antibiotics in individual patients with infections. In particular, critically ill patients display altered, highly variable pharmacokinetics and often suffer from...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Clinical pharmacology and therapeutics Ročník 109; číslo 4; s. 928 - 941
Hlavní autori: Wicha, Sebastian G., Märtson, Anne‐Grete, Nielsen, Elisabet I., Koch, Birgit C.P., Friberg, Lena E., Alffenaar, Jan‐Willem, Minichmayr, Iris K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.04.2021
ISSN:0009-9236, 1532-6535, 1532-6535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Therapeutic drug monitoring (TDM) and model‐informed precision dosing (MIPD) have evolved as important tools to inform rational dosing of antibiotics in individual patients with infections. In particular, critically ill patients display altered, highly variable pharmacokinetics and often suffer from infections caused by less susceptible bacteria. Consequently, TDM has been used to individualize dosing in this patient group for many years. More recently, there has been increasing research on the use of MIPD software to streamline the TDM process, which can increase the flexibility and precision of dose individualization but also requires adequate model validation and re‐evaluation of existing workflows. In parallel, new minimally invasive and noninvasive technologies such as microneedle‐based sensors are being developed, which—together with MIPD software—have the potential to revolutionize how patients are dosed with antibiotics. Nonetheless, carefully designed clinical trials to evaluate the benefit of TDM and MIPD approaches are still sparse, but are critically needed to justify the implementation of TDM and MIPD in clinical practice. The present review summarizes the clinical pharmacology of antibiotics, conventional TDM and MIPD approaches, and evidence of the value of TDM/MIPD for aminoglycosides, beta‐lactams, glycopeptides, and linezolid, for which precision dosing approaches have been recommended.
AbstractList Therapeutic drug monitoring (TDM) and model‐informed precision dosing (MIPD) have evolved as important tools to inform rational dosing of antibiotics in individual patients with infections. In particular, critically ill patients display altered, highly variable pharmacokinetics and often suffer from infections caused by less susceptible bacteria. Consequently, TDM has been used to individualize dosing in this patient group for many years. More recently, there has been increasing research on the use of MIPD software to streamline the TDM process, which can increase the flexibility and precision of dose individualization but also requires adequate model validation and re‐evaluation of existing workflows. In parallel, new minimally invasive and noninvasive technologies such as microneedle‐based sensors are being developed, which—together with MIPD software—have the potential to revolutionize how patients are dosed with antibiotics. Nonetheless, carefully designed clinical trials to evaluate the benefit of TDM and MIPD approaches are still sparse, but are critically needed to justify the implementation of TDM and MIPD in clinical practice. The present review summarizes the clinical pharmacology of antibiotics, conventional TDM and MIPD approaches, and evidence of the value of TDM/MIPD for aminoglycosides, beta‐lactams, glycopeptides, and linezolid, for which precision dosing approaches have been recommended.
Therapeutic drug monitoring (TDM) and model-informed precision dosing (MIPD) have evolved as important tools to inform rational dosing of antibiotics in individual patients with infections. In particular, critically ill patients display altered, highly variable pharmacokinetics and often suffer from infections caused by less susceptible bacteria. Consequently, TDM has been used to individualize dosing in this patient group for many years. More recently, there has been increasing research on the use of MIPD software to streamline the TDM process, which can increase the flexibility and precision of dose individualization but also requires adequate model validation and re-evaluation of existing workflows. In parallel, new minimally invasive and noninvasive technologies such as microneedle-based sensors are being developed, which-together with MIPD software-have the potential to revolutionize how patients are dosed with antibiotics. Nonetheless, carefully designed clinical trials to evaluate the benefit of TDM and MIPD approaches are still sparse, but are critically needed to justify the implementation of TDM and MIPD in clinical practice. The present review summarizes the clinical pharmacology of antibiotics, conventional TDM and MIPD approaches, and evidence of the value of TDM/MIPD for aminoglycosides, beta-lactams, glycopeptides, and linezolid, for which precision dosing approaches have been recommended.Therapeutic drug monitoring (TDM) and model-informed precision dosing (MIPD) have evolved as important tools to inform rational dosing of antibiotics in individual patients with infections. In particular, critically ill patients display altered, highly variable pharmacokinetics and often suffer from infections caused by less susceptible bacteria. Consequently, TDM has been used to individualize dosing in this patient group for many years. More recently, there has been increasing research on the use of MIPD software to streamline the TDM process, which can increase the flexibility and precision of dose individualization but also requires adequate model validation and re-evaluation of existing workflows. In parallel, new minimally invasive and noninvasive technologies such as microneedle-based sensors are being developed, which-together with MIPD software-have the potential to revolutionize how patients are dosed with antibiotics. Nonetheless, carefully designed clinical trials to evaluate the benefit of TDM and MIPD approaches are still sparse, but are critically needed to justify the implementation of TDM and MIPD in clinical practice. The present review summarizes the clinical pharmacology of antibiotics, conventional TDM and MIPD approaches, and evidence of the value of TDM/MIPD for aminoglycosides, beta-lactams, glycopeptides, and linezolid, for which precision dosing approaches have been recommended.
Author Wicha, Sebastian G.
Minichmayr, Iris K.
Märtson, Anne‐Grete
Friberg, Lena E.
Nielsen, Elisabet I.
Koch, Birgit C.P.
Alffenaar, Jan‐Willem
Author_xml – sequence: 1
  givenname: Sebastian G.
  surname: Wicha
  fullname: Wicha, Sebastian G.
  email: sebastian.wicha@uni-hamburg.de
  organization: University of Hamburg
– sequence: 2
  givenname: Anne‐Grete
  surname: Märtson
  fullname: Märtson, Anne‐Grete
  organization: University of Groningen
– sequence: 3
  givenname: Elisabet I.
  surname: Nielsen
  fullname: Nielsen, Elisabet I.
  organization: Uppsala University
– sequence: 4
  givenname: Birgit C.P.
  surname: Koch
  fullname: Koch, Birgit C.P.
  organization: University Medical Center Rotterdam
– sequence: 5
  givenname: Lena E.
  surname: Friberg
  fullname: Friberg, Lena E.
  organization: Uppsala University
– sequence: 6
  givenname: Jan‐Willem
  surname: Alffenaar
  fullname: Alffenaar, Jan‐Willem
  organization: Westmead Hospital
– sequence: 7
  givenname: Iris K.
  surname: Minichmayr
  fullname: Minichmayr, Iris K.
  organization: Uppsala University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33565627$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRS1URB8g8QUoSzYpfiSOs6xaHpWK6KKsLSexi1FiBzsR6o5P4Bv5Ehy1sLq6M0d3NHcKRsYaCcA1gnMEIb4r226OMcRnYIJSgmOaknQEJhDCPM4xoWMw9f492CRn7AKMCUlpSnE2Aa8PzjbR7k060cq-02W0cv0-erZGd9Zps486G1wl65-v77VR1jWyirZOltpra6KV9QMU5tHCdLrQNmT4S3CuRO3l1Uln4c79bvkUb14e18vFJi4JoTgmTClFJCtJkVSC0UTCXBHKEBaCEZqlZSpgkVUEqoThRKmKCKYqpmgOU4QyMgO3x9zW2Y9e-o432peyroWRtvccJ4yhPM8wDOjNCe2L8AJvnW6EO_C_KgIQH4FPXcvD_x5BPlTMQ8V8qJgvt7tByS9d-HAy
CitedBy_id crossref_primary_10_1007_s15010_025_02504_0
crossref_primary_10_1136_bmjopen_2024_087465
crossref_primary_10_3389_fphar_2022_1086551
crossref_primary_10_1007_s11096_024_01822_x
crossref_primary_10_1002_cpt_3048
crossref_primary_10_1080_14787210_2024_2406466
crossref_primary_10_1093_cid_ciab401
crossref_primary_10_1016_j_trac_2023_117094
crossref_primary_10_1093_cid_ciad386
crossref_primary_10_1097_FTD_0000000000001323
crossref_primary_10_1128_aac_00104_23
crossref_primary_10_3390_jcm13082317
crossref_primary_10_1093_ofid_ofae002
crossref_primary_10_1515_cclm_2023_0468
crossref_primary_10_1016_j_ijantimicag_2021_106515
crossref_primary_10_1002_psp4_12689
crossref_primary_10_3389_fphar_2024_1378872
crossref_primary_10_1111_bcp_15950
crossref_primary_10_3390_antibiotics13090801
crossref_primary_10_1097_FTD_0000000000001162
crossref_primary_10_1016_j_ijantimicag_2023_106750
crossref_primary_10_1007_s40265_024_02084_7
crossref_primary_10_3390_jof8010018
crossref_primary_10_1128_AAC_00465_21
crossref_primary_10_3390_antibiotics11091142
crossref_primary_10_1016_j_talanta_2025_128017
crossref_primary_10_1093_jac_dkab499
crossref_primary_10_3389_fphar_2023_1270443
crossref_primary_10_1016_j_clinthera_2023_03_015
crossref_primary_10_1080_17512433_2023_2194629
crossref_primary_10_1002_cpt_3176
crossref_primary_10_1093_jac_dkaf295
crossref_primary_10_5937_arhfarm71_32901
crossref_primary_10_1007_s40261_024_01415_6
crossref_primary_10_3390_pharmaceutics14050990
crossref_primary_10_3390_pharmaceutics14030489
crossref_primary_10_1002_cpt_3577
crossref_primary_10_1097_FTD_0000000000000987
crossref_primary_10_1016_j_saa_2025_125850
crossref_primary_10_1097_FTD_0000000000000986
crossref_primary_10_1097_FTD_0000000000001310
crossref_primary_10_1097_FTD_0000000000001034
crossref_primary_10_1007_s00134_023_07154_0
crossref_primary_10_1016_j_tube_2023_102325
crossref_primary_10_3389_fphar_2022_1054688
crossref_primary_10_1016_j_ijantimicag_2023_107034
crossref_primary_10_1128_aac_00174_25
crossref_primary_10_1016_j_ijantimicag_2023_107032
crossref_primary_10_1080_17425255_2022_2106215
crossref_primary_10_3390_antibiotics12071112
crossref_primary_10_1097_FTD_0000000000000934
crossref_primary_10_3389_fphar_2022_1063453
crossref_primary_10_3390_jpm14121135
crossref_primary_10_1097_FTD_0000000000000897
crossref_primary_10_1016_j_aca_2024_343332
crossref_primary_10_3389_fphar_2022_977372
crossref_primary_10_3390_antibiotics13090861
crossref_primary_10_1155_2023_6059079
crossref_primary_10_1007_s40262_023_01325_4
crossref_primary_10_1007_s40262_023_01329_0
crossref_primary_10_1007_s11096_024_01745_7
crossref_primary_10_1097_FTD_0000000000001067
crossref_primary_10_1016_j_ijantimicag_2023_106931
crossref_primary_10_1155_2022_7048605
crossref_primary_10_1016_j_ijantimicag_2022_106579
crossref_primary_10_3390_antibiotics11060743
crossref_primary_10_1097_CCM_0000000000006622
crossref_primary_10_1038_s41598_024_62402_7
crossref_primary_10_1093_jac_dkac324
crossref_primary_10_1208_s12248_022_00769_z
crossref_primary_10_1007_s00134_022_06679_0
crossref_primary_10_3390_pharmaceutics16020270
crossref_primary_10_1007_s00228_021_03218_6
crossref_primary_10_1016_j_pharmthera_2023_108433
crossref_primary_10_1097_FTD_0000000000000928
crossref_primary_10_3390_microorganisms13020304
crossref_primary_10_1007_s40620_023_01762_1
crossref_primary_10_1038_s41598_025_01256_z
crossref_primary_10_1016_j_cmi_2025_04_021
crossref_primary_10_1089_mdr_2024_0241
crossref_primary_10_3390_biomedicines11061633
crossref_primary_10_1111_bcp_16335
crossref_primary_10_1016_j_cca_2025_120448
crossref_primary_10_1016_j_cmi_2023_03_018
crossref_primary_10_1111_bcp_15368
crossref_primary_10_1002_psp4_13056
crossref_primary_10_1007_s40262_025_01483_7
crossref_primary_10_1016_j_ijantimicag_2023_106881
crossref_primary_10_1007_s40262_023_01274_y
crossref_primary_10_1007_s40005_024_00682_x
crossref_primary_10_3390_chemosensors10040128
crossref_primary_10_1631_jzus_B2200466
crossref_primary_10_3390_antibiotics14060541
crossref_primary_10_3389_fphar_2022_992354
crossref_primary_10_3390_pharmaceutics16030358
crossref_primary_10_1186_s13054_022_04195_7
crossref_primary_10_1177_17588359241250130
crossref_primary_10_1007_s40262_024_01361_8
crossref_primary_10_1016_j_clinthera_2022_10_005
crossref_primary_10_3390_pharmaceutics14102095
crossref_primary_10_1002_psp4_70012
crossref_primary_10_1016_j_talanta_2024_125697
crossref_primary_10_1111_bcp_16163
crossref_primary_10_1016_j_electacta_2025_146550
crossref_primary_10_3390_ph16111627
crossref_primary_10_1002_adhm_202300321
crossref_primary_10_1007_s00134_022_06847_2
crossref_primary_10_54393_mjz_v6i1_146
crossref_primary_10_3390_life11111130
crossref_primary_10_1007_s40262_023_01265_z
crossref_primary_10_1128_aac_00810_23
crossref_primary_10_1093_jac_dkaf013
crossref_primary_10_12793_tcp_2025_33_e9
crossref_primary_10_1093_jac_dkaf132
crossref_primary_10_1007_s11095_022_03252_8
crossref_primary_10_1093_jac_dkae160
crossref_primary_10_3389_fphar_2024_1439586
crossref_primary_10_1016_j_cll_2025_01_014
crossref_primary_10_3389_fphar_2022_915355
crossref_primary_10_3390_antibiotics11081036
crossref_primary_10_1007_s40262_024_01414_y
crossref_primary_10_1097_FTD_0000000000000942
crossref_primary_10_1002_cpt_2208
crossref_primary_10_1097_FTD_0000000000000941
crossref_primary_10_1002_bcp_70185
crossref_primary_10_1128_aac_00023_24
crossref_primary_10_3390_pharmaceutics14081750
crossref_primary_10_3390_antibiotics12121747
crossref_primary_10_1177_02698811241275630
crossref_primary_10_3390_antibiotics12020373
crossref_primary_10_1111_petr_14860
crossref_primary_10_1007_s40262_023_01310_x
crossref_primary_10_1016_j_psj_2025_105643
crossref_primary_10_3390_ph16020161
crossref_primary_10_1007_s00134_023_06990_4
crossref_primary_10_1007_s40262_023_01332_5
crossref_primary_10_1007_s40262_023_01336_1
crossref_primary_10_1002_psp4_12782
crossref_primary_10_1016_j_farma_2025_04_003
crossref_primary_10_1128_aac_00089_23
crossref_primary_10_1016_j_ijantimicag_2023_106783
crossref_primary_10_1016_j_addr_2024_115421
crossref_primary_10_1093_jac_dkad223
crossref_primary_10_1097_FTD_0000000000000939
crossref_primary_10_3389_fcimb_2023_1108155
crossref_primary_10_3389_fphar_2021_770518
crossref_primary_10_3390_antibiotics11010101
crossref_primary_10_1097_FTD_0000000000000936
crossref_primary_10_1007_s00101_025_01531_8
crossref_primary_10_1007_s11096_023_01618_5
crossref_primary_10_1038_s41598_023_39254_8
crossref_primary_10_1111_epi_18517
crossref_primary_10_3390_pharmaceutics15041283
crossref_primary_10_1007_s00101_022_01174_z
crossref_primary_10_1002_psp4_70077
crossref_primary_10_1007_s00134_022_06921_9
crossref_primary_10_1007_s00101_022_01150_7
crossref_primary_10_1002_jcph_6188
crossref_primary_10_1007_s40262_025_01528_x
crossref_primary_10_1093_intqhc_mzae062
crossref_primary_10_1007_s40262_023_01283_x
crossref_primary_10_1007_s40262_025_01478_4
crossref_primary_10_1007_s12281_022_00430_4
crossref_primary_10_1016_j_talanta_2025_128312
crossref_primary_10_1097_MCC_0000000000001187
crossref_primary_10_1002_cpt_3197
crossref_primary_10_3390_pr9112087
crossref_primary_10_3390_antibiotics14020132
crossref_primary_10_1016_j_jchromb_2024_124132
crossref_primary_10_1016_j_phrs_2022_106416
crossref_primary_10_3389_fphar_2024_1348112
crossref_primary_10_1080_17425255_2025_2501128
crossref_primary_10_3390_pharmaceutics16050677
crossref_primary_10_2147_IDR_S373348
crossref_primary_10_3390_pharmaceutics14010114
crossref_primary_10_1186_s40780_025_00425_6
crossref_primary_10_1002_phar_2871
crossref_primary_10_1007_s40262_025_01485_5
crossref_primary_10_1016_j_ijantimicag_2024_107305
crossref_primary_10_1016_j_addr_2024_115447
crossref_primary_10_1093_ofid_ofac626
crossref_primary_10_1097_FTD_0000000000001091
crossref_primary_10_1016_j_farma_2025_07_007
crossref_primary_10_3390_antibiotics12020301
crossref_primary_10_1007_s40262_021_01102_1
crossref_primary_10_1007_s40262_023_01233_7
crossref_primary_10_1016_j_jiac_2023_08_017
crossref_primary_10_1016_j_ejps_2025_107146
crossref_primary_10_1159_000530815
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
2021 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
– notice: 2021 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
CorporateAuthor International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG)
CorporateAuthor_xml – name: International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG)
DBID 24P
NPM
7X8
DOI 10.1002/cpt.2202
DatabaseName Wiley Online Library Open Access
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1532-6535
EndPage 941
ExternalDocumentID 33565627
CPT2202
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Marie Skłodowska‐Curie Actions
  funderid: 713660
– fundername: Marie Skłodowska-Curie Actions
  grantid: 713660
GroupedDBID ---
--K
-Q-
.55
.GJ
0R~
1B1
1CY
1OB
1OC
24P
29B
33P
354
36B
39C
3O-
4.4
52O
53G
5GY
5RE
6J9
70F
8F7
AAESR
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQOH
AAQQT
AAWTL
AAYCA
AAYOK
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ACBNA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADBTR
ADKYN
ADNMO
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
C45
CAG
COF
CS3
DCZOG
DPXWK
DU5
EBS
EE.
EJD
EMOBN
F5P
GODZA
GWYGA
HGLYW
IH2
IHE
J5H
L7B
LATKE
LEEKS
LITHE
LOXES
LSO
LUTES
LYRES
M41
MEWTI
N4W
N9A
NQ-
O9-
OPC
OVD
P2P
P2W
PALCI
RIG
RIWAO
RJQFR
RNTTT
ROL
RPZ
SAMSI
SEW
SJN
SUPJJ
TEORI
TWZ
UHS
VH1
WBKPD
WH7
WOHZO
WXSBR
X7M
Y6R
YFH
YOC
YXB
ZGI
ZXP
ZZTAW
NPM
7X8
ID FETCH-LOGICAL-c3362-38fff3e8c3b4da864e09f36812aa83675c5a0b7d30f4824ffd3a8fd8f69051173
IEDL.DBID 24P
ISSN 0009-9236
1532-6535
IngestDate Fri Sep 05 08:49:59 EDT 2025
Mon Jul 21 05:25:08 EDT 2025
Sun Jul 06 04:45:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3362-38fff3e8c3b4da864e09f36812aa83675c5a0b7d30f4824ffd3a8fd8f69051173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.2202
PMID 33565627
PQID 2488199720
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2488199720
pubmed_primary_33565627
wiley_primary_10_1002_cpt_2202_CPT2202
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical pharmacology and therapeutics
PublicationTitleAlternate Clin Pharmacol Ther
PublicationYear 2021
References 2017; 83
2010; 54
2017; 4
2013; 2
1995; 39
2020; 20
2013; 65
2015; 70
2017; 49
2019; 57
2017; 43
1993; 21
2019; 58
2019; 16
2011; 55
1999; 43
2020; 56
2016; 71
2018; 84
2018; 40
2020; 11
2013; 8
2012; 56
2017; 9
2013; 9
2016; 33
2018; 7
2015; 45
2004; 31
2000; 17
2019; 63
2013; 57
2017; 39
2020; 93
2019; 23
2020; 9
2019; 25
2019; 28
1994; 78
2020; 46
2018; 73
2012; 67
2003; 42
2017; 62
2015; 2
2019; 7
2021; 109
2017; 61
2012; 141
2010; 32
2019; 9
2015; 6
2010; 36
2012
2020; 42
2019; 74
2020; 40
2017; 21
2017; 23
2013; 41
2019; 38
2020; 37
2011; 33
2006
2018; 62
2020; 33
2003
2020; 77
2007; 51
2012; 34
2016; 16
1976; 4
2016; 12
2015; 350
2017; 50
1991; 27
2020; 75
2019; 41
2019; 85
2013; 32
2019; 44
2020
2004; 58
2017; 56
2020; 26
2016; 63
2017; 19
2020; 24
2016; 60
2017; 101
2021; 60
2007; 44
2016; 8
2014; 77
2014; 33
2018; 57
References_xml – volume: 7
  year: 2019
  article-title: evaluation of an intravenous microdialysis catheter for therapeutic drug monitoring of gentamicin and vancomycin
  publication-title: Pharmacol. Res. Perspect.
– volume: 40
  start-page: 1061
  year: 2020
  end-page: 1068
  article-title: Molecular adsorbent recirculating system therapy with continuous renal replacement therapy enhanced clearance of piperacillin in a pediatric patient and led to failure to attain pharmacodynamic targets
  publication-title: Pharmacotherapy
– volume: 20
  start-page: 57
  year: 2020
  article-title: The effect of therapeutic drug monitoring of beta‐lactam and fluoroquinolones on clinical outcome in critically ill patients: the DOLPHIN trial protocol of a multi‐centre randomised controlled trial
  publication-title: BMC Infect. Dis.
– volume: 60
  year: 2016
  article-title: Bayesian estimation of tobramycin exposure in cystic fibrosis
  publication-title: Antimicrob. Agents Chemother.
– volume: 9
  start-page: 153
  year: 2020
  end-page: 164
  article-title: Bayesian data assimilation to support informed decision making in individualized chemotherapy
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 45
  start-page: 442
  year: 2015
  end-page: 444
  article-title: TDMx: a novel web‐based open‐access support tool for optimising antimicrobial dosing regimens in clinical routine
  publication-title: Int. J. Antimicrob. Agents
– volume: 63
  start-page: S80
  year: 2016
  end-page: S87
  article-title: Linezolid for infants and toddlers with disseminated tuberculosis: first steps
  publication-title: Clin. Infect. Dis.
– volume: 38
  start-page: 1224
  year: 2019
  end-page: 1227
  article-title: Route of oseltamivir administration affects metabolite concentrations in critically ill children
  publication-title: Pediatr. Infect. Dis. J.
– volume: 33
  start-page: 592
  year: 2011
  end-page: 601
  article-title: Comparing 3 methods of monitoring gentamicin concentrations in patients with febrile neutropenia
  publication-title: Ther. Drug Monit.
– volume: 11
  start-page: 551
  year: 2020
  article-title: Model‐informed precision dosing of vancomycin in hospitalized children: implementation and adoption at an academic children’s hospital
  publication-title: Front. Pharmacol.
– volume: 67
  start-page: 2034
  year: 2012
  end-page: 2042
  article-title: Therapeutic drug monitoring may improve safety outcomes of long‐term treatment with linezolid in adult patients
  publication-title: J. Antimicrob. Chemother.
– volume: 71
  start-page: 3168
  year: 2016
  end-page: 3178
  article-title: Population pharmacokinetics and pharmacodynamics of teicoplanin in neonates: making better use of C‐reactive protein to deliver individualized therapy
  publication-title: J. Antimicrob. Chemother.
– volume: 109
  start-page: 175
  year: 2021
  end-page: 183
  article-title: A model averaging/selection approach improves the predictive performance of model‐informed precision dosing: vancomycin as a case study
  publication-title: Clin. Pharmacol. Ther.
– volume: 23
  start-page: 104
  year: 2019
  article-title: Optimization of the treatment with beta‐lactam antibiotics in critically ill patients—guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d'Anesthésie et Réanimation—SFAR)
  publication-title: Crit. Care
– volume: 93
  start-page: 329
  year: 2020
  end-page: 338
  article-title: Impact of augmented renal clearance on the pharmacokinetics of linezolid: advantages of continuous infusion from a pharmacokinetic/pharmacodynamic perspective
  publication-title: Int. J. Infect. Dis.
– volume: 46
  start-page: 1127
  year: 2020
  end-page: 1153
  article-title: Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper
  publication-title: Intensive Care Med.
– volume: 73
  start-page: 564
  year: 2018
  end-page: 568
  article-title: MIC‐based dose adjustment: facts and fables
  publication-title: J. Antimicrob. Chemother.
– volume: 9
  start-page: 43
  year: 2017
  article-title: Revolutionizing therapeutic drug monitoring with the use of interstitial fluid and microneedles technology
  publication-title: Pharmaceutics
– volume: 32
  start-page: e155
  year: 2013
  end-page: e163
  article-title: Improved vancomycin dosing in children using area under the curve exposure
  publication-title: Pediatr. Infect. Dis. J.
– volume: 2
  start-page: 291
  year: 2013
  end-page: 292
  article-title: Vancomycin dosing practices, trough concentrations, and predicted area under the curve in children with suspected invasive staphylococcal infections
  publication-title: J. Pediatric Infect. Dis. Soc.
– volume: 56
  start-page: 106059
  year: 2020
  article-title: Pharmacodynamics of immune response biomarkers of interest for evaluation of treatment effects in bacterial infections
  publication-title: Int. J. Antimicrob. Agents
– volume: 60
  start-page: 53
  year: 2021
  end-page: 68
  article-title: Can population pharmacokinetics of antibiotics be extrapolated? Implications of external evaluations
  publication-title: Clin. Pharmacokinet.
– volume: 58
  start-page: 8
  year: 2004
  end-page: 19
  article-title: Quantitative justification for target concentration intervention ‐ parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides
  publication-title: Br. J. Clin. Pharmacol.
– volume: 34
  start-page: 160
  year: 2012
  end-page: 164
  article-title: Therapeutic drug monitoring of beta‐lactam antibiotics in burns patients–a one‐year prospective study
  publication-title: Ther. Drug Monit.
– volume: 40
  start-page: 17
  year: 2018
  end-page: 37
  article-title: Systematic review of salivary versus blood concentrations of antituberculosis drugs and their potential for salivary therapeutic drug monitoring
  publication-title: Ther. Drug Monit.
– volume: 109
  start-page: 1063
  year: 2021
  end-page: 1073
  article-title: Model‐informed drug development for antimicrobials: Translational PK and PK/PD modeling to predict an efficacious human dose for apramycin
  publication-title: Clin. Pharmacol. Ther.
– volume: 23
  start-page: 454
  year: 2017
  end-page: 459
  article-title: Cefepime plasma concentrations and clinical toxicity: a retrospective cohort study
  publication-title: Clin. Microbiol. Infect.
– volume: 55
  start-page: 3067
  year: 2011
  end-page: 3074
  article-title: Protein binding: do we ever learn?
  publication-title: Antimicrob. Agents Chemother.
– volume: 4
  start-page: 183
  year: 1976
  end-page: 195
  article-title: Pharmacokinetics of dosing regimens which utilize multiple intravenous infusions: Gentamicin in burn patients
  publication-title: J. Pharmacokinet. Biopharm.
– volume: 350
  start-page: h2750
  year: 2015
  article-title: Regression based quasi‐experimental approach when randomisation is not an option: interrupted time series analysis
  publication-title: BMJ
– volume: 77
  start-page: 1104
  year: 2020
  end-page: 1112
  article-title: Towards precision medicine: therapeutic drug monitoring‐guided dosing of vancomycin and β‐lactam antibiotics to maximize effectiveness and minimize toxicity
  publication-title: Am. J. Health Syst. Pharm.
– year: 2020
  article-title: Nonparametric methods in population pharmacokinetics
  publication-title: J. Clin. Pharmacol.
– volume: 25
  start-page: 383.e1
  year: 2019
  end-page: 383.e4
  article-title: Therapeutic drug monitoring of imipenem and the incidence of toxicity and failure in hospitalized patients: a retrospective cohort study
  publication-title: Clin. Microbiol. Infect.
– volume: 27
  start-page: 41
  issue: supp. C
  year: 1991
  end-page: 47
  article-title: Influence of dosage schedule on renal cortical accumulation of amikacin and tobramycin in man
  publication-title: J. Antimicrob. Chemother.
– volume: 49
  start-page: 688
  year: 2017
  end-page: 694
  article-title: Simple strategy to assess linezolid exposure in patients with multi‐drug‐resistant and extensively‐drug‐resistant tuberculosis
  publication-title: Int. J. Antimicrob. Agents
– volume: 21
  start-page: 735
  year: 1993
  end-page: 750
  article-title: The importance of modeling interoccasion variability in population pharmacokinetic analyses
  publication-title: J. Pharmacokinet. Biopharm.
– volume: 41
  start-page: 409
  year: 2019
  end-page: 430
  article-title: Official International Association for therapeutic drug monitoring and clinical toxicology guideline: development and validation of dried blood spot‐based methods for therapeutic drug monitoring
  publication-title: Ther. Drug Monit.
– year: 2020
  article-title: Towards precision dosing of vancomycin in critically ill patients: an evaluation of the predictive performance of pharmacometric models in ICU patients
  publication-title: Clin. Microbiol. Infect.
– volume: 43
  start-page: 1003
  year: 1999
  end-page: 1012
  article-title: Aminoglycosides: nephrotoxicity
  publication-title: Antimicrob. Agents Chemother.
– volume: 62
  start-page: e02042
  year: 2018
  end-page: 17
  article-title: A prospective trial on the use of trough concentration versus area under the curve (AUC) to determine therapeutic vancomycin dosing
  publication-title: Antimicrob. Agents Chemother.
– volume: 16
  start-page: 69
  year: 2016
  end-page: 79
  article-title: Applicability of a single time point strategy for the prediction of area under the concentration curve of linezolid in patients: superiority of Ctrough‐ over Cmax‐derived linear regression models
  publication-title: Drugs R D
– volume: 50
  start-page: 557
  year: 2017
  end-page: 563
  article-title: Linezolid in liver failure: exploring the value of the maximal liver function capacity (LiMAx) test in a pharmacokinetic pilot study
  publication-title: Int. J. Antimicrob. Agents
– volume: 58
  start-page: 389
  year: 2019
  end-page: 399
  article-title: Monitoring of tobramycin exposure: what is the best estimation method and sampling time for clinical practice?
  publication-title: Clin. Pharmacokinet.
– volume: 141
  start-page: 1327
  year: 2012
  end-page: 1336
  article-title: Introduction to drug pharmacokinetics in the critically ill patient
  publication-title: Chest
– volume: 25
  start-page: e1
  year: 2019
  end-page: 1286.e7
  article-title: Towards precision dosing of vancomycin: a systematic evaluation of pharmacometric models for Bayesian forecasting
  publication-title: Clin. Microbiol. Infect.
– volume: 75
  start-page: 3293
  year: 2020
  end-page: 3302
  article-title: Assessing the accuracy of two Bayesian forecasting programs in estimating vancomycin drug exposure
  publication-title: J. Antimicrob. Chemother.
– volume: 32
  start-page: 97
  year: 2010
  end-page: 101
  article-title: Limited sampling strategies for therapeutic drug monitoring of linezolid in patients with multidrug‐resistant tuberculosis
  publication-title: Ther. Drug Monit.
– volume: 8
  year: 2013
  article-title: Benefits of therapeutic drug monitoring of vancomycin: a systematic review and meta‐analysis
  publication-title: PLoS One
– volume: 33
  start-page: 1115
  year: 2016
  end-page: 1125
  article-title: Simulation‐based evaluation of PK/PD indices for meropenem across patient groups and experimental designs
  publication-title: Pharm. Res.
– volume: 26
  start-page: 1008
  year: 2020
  end-page: 1016
  article-title: How to design a study to evaluate therapeutic drug monitoring in infectious diseases?
  publication-title: Clin. Microbiol. Infect.
– volume: 57
  start-page: 442
  year: 2019
  end-page: 451
  article-title: Host‐response biomarkers for the diagnosis of bacterial respiratory tract infections
  publication-title: Clin. Chem. Lab. Med.
– volume: 57
  start-page: 6165
  year: 2013
  end-page: 6170
  article-title: Protein binding of β‐Lactam antibiotics in critically ill patients: can we successfully predict unbound concentrations?
  publication-title: Antimicrob. Agents Chemother.
– volume: 19
  start-page: 334
  year: 2017
  end-page: 342
  article-title: Utility of microdialysis in infectious disease drug development and dose optimization
  publication-title: AAPS J.
– volume: 70
  start-page: 2369
  year: 2015
  end-page: 2375
  article-title: Can therapeutic drug monitoring optimize exposure to piperacillin in febrile neutropenic patients with haematological malignancies? A randomized controlled trial
  publication-title: J. Antimicrob. Chemother.
– volume: 84
  start-page: 490
  year: 2018
  end-page: 500
  article-title: The risk of febrile neutropenia in breast cancer patients following adjuvant chemotherapy is predicted by the time course of interleukin‐6 and C‐reactive protein by modelling
  publication-title: Br. J. Clin. Pharmacol.
– volume: 7
  start-page: 785
  year: 2018
  end-page: 787
  article-title: Model‐informed precision dosing at the bedside: scientific challenges and opportunities
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 78
  start-page: 27
  year: 1994
  end-page: 30
  article-title: A molecular and cellular hypothesis for aminoglycoside‐induced deafness
  publication-title: Hear. Res.
– volume: 44
  start-page: 639
  year: 2019
  end-page: 652
  article-title: Clinical and pharmacokinetic outcomes of peak–trough‐based versus trough‐based vancomycin therapeutic drug monitoring approaches: a pragmatic randomized controlled trial
  publication-title: Eur. J. Drug Metab. Pharmacokinet.
– volume: 65
  start-page: 1053
  year: 2013
  end-page: 1090
  article-title: Pharmacokinetic‐pharmacodynamic modeling of antibacterial drugs
  publication-title: Pharmacol. Rev.
– volume: 12
  start-page: 533
  year: 2016
  end-page: 544
  article-title: Drug monitoring and individual dose optimization of antimicrobial drugs: oxazolidinones
  publication-title: Expert Opin. Drug Metab. Toxicol.
– volume: 85
  start-page: 1326
  year: 2019
  end-page: 1336
  article-title: Handling interoccasion variability in model‐based dose individualization using therapeutic drug monitoring data
  publication-title: Br. J. Clin. Pharmacol.
– volume: 75
  start-page: 718
  year: 2020
  end-page: 725
  article-title: A retrospective study to determine the cefepime‐induced neurotoxicity threshold in hospitalized patients
  publication-title: J. Antimicrob. Chemother.
– volume: 24
  start-page: 558
  year: 2020
  article-title: Failure of target attainment of beta‐lactam antibiotics in critically ill patients and associated risk factors: a two‐center prospective study (EXPAT)
  publication-title: Crit. Care
– volume: 37
  year: 2020
  article-title: Optimizing predictive performance of bayesian forecasting for vancomycin concentration in intensive care patients
  publication-title: Pharm. Res.
– volume: 6
  year: 2015
  article-title: Preclinical evaluations to identify optimal linezolid regimens for tuberculosis therapy
  publication-title: mBio
– volume: 63
  start-page: e00605
  year: 2019
  end-page: e00619
  article-title: Reappraisal of linezolid dosing in renal impairment to improve safety
  publication-title: Antimicrob. Agents Chemother.
– volume: 54
  start-page: 4605
  year: 2010
  end-page: 4610
  article-title: Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis
  publication-title: Antimicrob. Agents Chemother.
– year: 2020
  article-title: Parametric approaches in population pharmacokinetics
  publication-title: J. Clin. Pharmacol.
– volume: 9
  start-page: 1067
  year: 2013
  end-page: 1084
  article-title: Drug absorption, distribution, metabolism and excretion considerations in critically ill adults
  publication-title: Expert Opin. Drug Metab. Toxicol.
– volume: 77
  start-page: 3
  year: 2014
  end-page: 11
  article-title: The effect of pathophysiology on pharmacokinetics in the critically ill patient ‐ concepts appraised by the example of antimicrobial agents
  publication-title: Adv. Drug Deliv. Rev.
– volume: 26
  start-page: 1254.e9
  year: 2020
  end-page: 1254.e15
  article-title: Semi‐mechanistic PK/PD modelling of combined polymyxin B and minocycline against a polymyxin‐resistant strain of Acinetobacter baumannii
  publication-title: Clin. Microbiol. Infect.
– volume: 56
  start-page: 5758
  year: 2012
  end-page: 5763
  article-title: Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug‐resistant tuberculosis
  publication-title: Antimicrob. Agents Chemother.
– volume: 39
  start-page: 303
  year: 2017
  article-title: Is trough concentration of vancomycin predictive of the area under the curve? A Commentary
  publication-title: Ther. Drug Monit.
– volume: 38
  start-page: 2113
  year: 2019
  end-page: 2120
  article-title: Evaluating the optimal dose of teicoplanin with therapeutic drug monitoring: not too high for adverse event, not too low for treatment efficacy
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
– volume: 101
  start-page: 773
  year: 2017
  end-page: 781
  article-title: Colistin reduces LPS‐triggered inflammation in a human sepsis model : a randomized controlled trial
  publication-title: Clin. Pharmacol. Ther.
– volume: 21
  start-page: 276
  year: 2017
  article-title: Cefepime‐induced neurotoxicity: a systematic review
  publication-title: Crit. Care
– volume: 62
  start-page: 2042
  year: 2017
  end-page: 2059
  article-title: Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing
  publication-title: Antimicrob. Agents Chemother.
– volume: 33
  start-page: 71
  year: 2020
  end-page: 82
  article-title: Antibiotic dosing during extracorporeal membrane oxygenation: does the system matter?
  publication-title: Curr. Opin. Anaesthesiol.
– volume: 56
  start-page: 617
  year: 2017
  end-page: 633
  article-title: Clinical determinants of target non‐attainment of linezolid in plasma and interstitial space fluid: a pooled population pharmacokinetic analysis with focus on critically ill patients
  publication-title: Clin. Pharmacokinet.
– volume: 74
  start-page: 3588
  year: 2019
  end-page: 3595
  article-title: Proactive therapeutic drug monitoring (TDM) may be helpful in managing long‐term treatment with linezolid safely: findings from a monocentric, prospective, open‐label, interventional study
  publication-title: J. Antimicrob. Chemother.
– volume: 51
  start-page: 3449
  year: 2007
  end-page: 3451
  article-title: Concentration‐effect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect
  publication-title: Antimicrob. Agents Chemother.
– year: 2020
  article-title: TDM is dead. Long live TCI!
  publication-title: Br. J. Clin. Pharmacol.
– volume: 33
  start-page: 1029
  year: 2014
  end-page: 1035
  article-title: Therapeutic drug monitoring and receiver operating characteristic curve prediction may reduce the development of linezolid‐associated thrombocytopenia in critically ill patients
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
– volume: 77
  start-page: 835
  year: 2020
  end-page: 863
  article-title: Therapeutic monitoring of vancomycin for serious methicillin‐resistant infections: a revised consensus guideline and review by the American Society of Health‐System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists
  publication-title: Am. J. Health Syst. Pharm.
– volume: 26
  start-page: 436
  year: 2020
  end-page: 446
  article-title: Vancomycin area under the curve to minimum inhibitory concentration ratio predicting clinical outcome: a systematic review and meta‐analysis with pooled sensitivity and specificity
  publication-title: Clin. Microbiol. Infect.
– volume: 56
  start-page: 2000803
  year: 2020
  article-title: Dose optimisation of first‐line tuberculosis drugs using therapeutic drug monitoring in saliva: feasible for rifampicin, not for isoniazid
  publication-title: Eur. Respir. J.
– volume: 71
  start-page: 3157
  year: 2016
  end-page: 3167
  article-title: Resistance suppression by high‐intensity, short‐duration aminoglycoside exposure against hypermutable and non‐hypermutable
  publication-title: J. Antimicrob. Chemother.
– volume: 2
  start-page: 1627
  year: 2015
  end-page: 1633
  article-title: Linezolid trough concentrations correlate with mitochondrial toxicity‐related adverse events in the treatment of chronic extensively drug‐resistant tuberculosis
  publication-title: EBioMedicine
– volume: 63
  start-page: e02379
  year: 2019
  end-page: e2418
  article-title: Evaluation of saliva as a potential alternative sampling matrix for therapeutic drug monitoring of levofloxacin in patients with multidrug‐resistant tuberculosis
  publication-title: Antimicrob. Agents Chemother.
– volume: 42
  start-page: 1411
  year: 2003
  end-page: 1423
  article-title: Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme
  publication-title: Clin. Pharmacokinet.
– volume: 31
  start-page: 75
  year: 2004
  end-page: 107
  article-title: A Bayesian approach to tracking patients having changing pharmacokinetic parameters
  publication-title: J. Pharmacokinet. Pharmacodyn.
– volume: 4
  start-page: 16
  year: 2017
  end-page: 21
  article-title: Concise review: current and emerging biomarkers of nephrotoxicity
  publication-title: Curr. Opin. Toxicol.
– volume: 9
  start-page: 334
  year: 2020
  end-page: 341
  article-title: Intravenous vancomycin therapeutic drug monitoring in children: evaluation of a pharmacy‐driven protocol and collaborative practice agreement
  publication-title: J. Pediatric Infect. Dis. Soc.
– volume: 16
  year: 2019
  article-title: Pharmacokinetics, optimal dosing, and safety of linezolid in children with multidrug‐resistant tuberculosis: Combined data from two prospective observational studies
  publication-title: PLoS Med.
– volume: 17
  start-page: S11
  year: 2000
  end-page: S16
  article-title: Experimental and quasi‐experimental designs for evaluating guideline implementation strategies
  publication-title: Fam. Pract.
– volume: 42
  start-page: 83
  year: 2020
  end-page: 92
  article-title: Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and pharmacodynamics
  publication-title: Ther. Drug Monit.
– volume: 34
  start-page: 565
  year: 2012
  end-page: 568
  article-title: Safe and effective variability‐a criterion for dose individualization
  publication-title: Ther. Drug Monit.
– volume: 8
  start-page: 15
  year: 2016
  end-page: 18
  article-title: Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections
  publication-title: Clin. Pharmacol.
– year: 2003
– volume: 73
  start-page: 3087
  year: 2018
  end-page: 3094
  article-title: Therapeutic drug monitoring of β‐lactam antibiotics in the critically ill: direct measurement of unbound drug concentrations to achieve appropriate drug exposures
  publication-title: J. Antimicrob. Chemother.
– volume: 44
  start-page: 79
  year: 2007
  end-page: 86
  article-title: Pharmacokinetics‐pharmacodynamics of antimicrobial therapy: It’s not just for mice anymore
  publication-title: Clin. Infect. Dis.
– volume: 57
  start-page: 1435
  year: 2018
  end-page: 1447
  article-title: Target‐controlled continuous infusion for antibiotic dosing: proof‐of‐principle in an vancomycin trial in intensive care unit patients
  publication-title: Clin. Pharmacokinet.
– volume: 11
  year: 2020
  end-page: 172
  article-title: Impact of inaccurate documentation of sampling and infusion time in model‐informed precision dosing
  publication-title: Front. Pharmacol.
– volume: 9
  start-page: 393
  year: 2020
  article-title: Augmented renal clearance and how to augment antibiotic dosing
  publication-title: Antibiotics
– year: 2012
– volume: 43
  start-page: 623
  year: 1999
  end-page: 629
  article-title: Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram‐negative bacteria
  publication-title: Antimicrob. Agents Chemother.
– volume: 61
  start-page: e01011
  year: 2017
  end-page: e1016
  article-title: Optimization of synergistic combination regimens against carbapenem‐ and aminoglycoside‐resistant clinical isolates via mechanism‐based pharmacokinetic/pharmacodynamic modeling
  publication-title: Antimicrob. Agents Chemother.
– volume: 61
  start-page: e00751
  year: 2017
  end-page: 17
  article-title: Linezolid dose that maximizes sterilizing effect while minimizing toxicity and resistance emergence for tuberculosis
  publication-title: Antimicrob. Agents Chemother.
– volume: 109
  start-page: 233
  year: 2021
  end-page: 242
  article-title: Continuous learning in model‐informed precision dosing: a case study in pediatric dosing of vancomycin
  publication-title: Clin. Pharmacol. Ther.
– volume: 43
  start-page: 829
  year: 2017
  end-page: 840
  article-title: Diagnostic work‐up and specific causes of acute kidney injury
  publication-title: Intensive Care Med.
– volume: 39
  start-page: 597
  year: 1995
  end-page: 603
  article-title: Aminoglycosides–50 years on
  publication-title: Br. J. Clin. Pharmacol.
– volume: 40
  start-page: 977
  year: 2018
  end-page: 981
  article-title: Appropriateness of vancomycin therapeutic drug monitoring and its outcomes among non‐dialysis patients in a tertiary hospital in Singapore
  publication-title: Int. J. Clin. Pharm.
– year: 2006
– volume: 9
  start-page: CD002009
  year: 2019
  article-title: Once‐daily versus multiple‐daily dosing with intravenous aminoglycosides for cystic fibrosis
  publication-title: Cochrane Database Syst. Rev.
– volume: 28
  start-page: 9076
  year: 2019
  article-title: Model predictive control with Bayesian updates (MPC) is more robust to model misspecification, compared to standard Bayesian control (sEBE) for Therapeutic Drug Management (TDM). Investigation in a cohort of 315 patients receiving tacrolimus during the fi
  publication-title: PAGE
– volume: 83
  start-page: 1758
  year: 2017
  end-page: 1772
  article-title: Population pharmacokinetics and pharmacodynamics of linezolid‐induced thrombocytopenia in hospitalized patients
  publication-title: Br. J. Clin. Pharmacol.
– volume: 41
  start-page: 586
  year: 2013
  end-page: 589
  article-title: Linezolid plasma concentrations and occurrence of drug‐related haematological toxicity in patients with gram‐positive infections
  publication-title: Int. J. Antimicrob. Agents
– volume: 36
  start-page: 179
  year: 2010
  end-page: 181
  article-title: Higher linezolid exposure and higher frequency of thrombocytopenia in patients with renal dysfunction
  publication-title: Int. J. Antimicrob. Agents
SSID ssj0004988
Score 2.6791189
SecondaryResourceType review_article
Snippet Therapeutic drug monitoring (TDM) and model‐informed precision dosing (MIPD) have evolved as important tools to inform rational dosing of antibiotics in...
Therapeutic drug monitoring (TDM) and model-informed precision dosing (MIPD) have evolved as important tools to inform rational dosing of antibiotics in...
SourceID proquest
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 928
Title From Therapeutic Drug Monitoring to Model‐Informed Precision Dosing for Antibiotics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.2202
https://www.ncbi.nlm.nih.gov/pubmed/33565627
https://www.proquest.com/docview/2488199720
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQYWDh_SgvGQl1amnicxNnrFoqBqgyFNQtcuIYIUFSpS1SN34Cv5Ffgi9pGpAYkFgcKXHi6HznfL7cfUfIlQSIwFVuKwLltbgyG1apuNPSjtSeNgDEy4vBPN65w6EYjz1_GVWJuTAFP8TK4YaWka_XaOAynLYr0tBoMrtmDHkk120bBJZtYNyvciI9IcoqagbEOCXxrMXa5Z2_gcqfGDX_yAy2__N6O2RrCS1pt9CFXbIWJ3uk4Rfc1IsmHVWpVtMmbVC_Yq1e7JOHQZa-fu9D-9n8iRY2j84_OkspVk57-Xz_KJKYYkX9bFmjh_ZT9DpQc552E0xESXGcA_Pcm1HvtrWsuWAmCxOoQGitIRYRhFxJ4fDY8jQgSZmUAszuIupIK3QVWJoLxrVWIIVWQjtI9GW7cEhqSZrEx4SqjgrBwCPFNXCjDlLatnScUIdM2baGOrksxR8YncYfFTKJ0_k0YGZVwQAYZtXJUTEvwaQg3wgAEIIyt04aufhXFwr-ZRYYwQco-KDnj_B48teOp2STYcBKHpZzRmqzbB6fk43obfY8zS5y7TKtOxamHfr3XwpM1ek
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KFfTi-1GfK0hP1iY722SDJ_GBYi05VPEWNtmsCJqUNBV68yf4G_0l7iSNVfAgeAokmwezs7vfTub7hpBDCRCBq9xWBMprcWU2rFJxp6UdqT1tAIhXFIO577q9nnh48PwaOam4MKU-xFfADUdGMV_jAMeAdHuqGhoN8mPGUEhyhptFBp2ccX9KivSEqMqoGRTjVMqzFmtXd_6GKn-C1GKVuVz81_ctkYUJuKSnpTcsk1qcrJCmX6pTj49of0q2Gh7RJvWnutXjVXJ3maUv39vQ82z0SMtRj-E_mqcUa6c9f7y9lzSmWFE_m1Tpoecpxh2oOU9PE6SipPieNfPci_7ZVWtSdcF0F1KoQGitIRYRhFxJ4fDY8jSgTJmUAsz-IupIK3QVWJoLxrVWIIVWQjso9WW7sE7qSZrEm4SqjgrBACTFNXDjEFLatnScUIdM2baGBjmo7B8Yr8ZfFTKJ09EwYGZewRQYZjXIRtkxwaCU3wgAEIQyt0Gahf2_LpQKzCwwhg_Q8MGZ38fj1l8b7pO5q_5tN-he9262yTzD9JUiSWeH1PNsFO-S2eg1fxpme4WrfQK7Ctfg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6Kinjx_ajPFaQnq8nONtngqbQWxVJyqNJb2GSzImhS0lbw5k_wN_pL3EmaVsGD4CmQbJJldnbz7WS-bwg5kwARuMqtR6C8OldmwyoVd-rakdrTBoB4eTGYh67b64nBwPMr5KrkwhT6ELOAG86MfL3GCR4Plb6cq4ZGw_EFYygkucgbro0uzbg_J0V6QpRl1AyKcUrlWYtdlnf-hip_gtT8K9NZ-1f_1snqFFzSZuENG6QSJ5uk5hfq1G_ntD8nW43OaY36c93qty1y38nSl-9taDubPNJi1mP4j45TirXTnj_fPwoaU6yon02r9NB2inEHas7TZoJUlBTfs22ee91v3dSnVRfMcCGFCoTWGmIRQciVFA6PLU8DypRJKcDsL6KGtEJXgaW5YFxrBVJoJbSDUl-2CztkIUmTeI9Q1VAhGICkuAZuHEJK25aOE-qQKdvWUCWnpf0D49X4q0ImcToZBcysK5gCw6wq2S0GJhgW8hsBAIJQ5lZJLbf_7EKhwMwCY_gADR-0_D4e9__a8IQs--1O0L3t3R2QFYbZK3mOziFZGGeT-IgsRa_jp1F2nHvaF5e312Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Therapeutic+Drug+Monitoring+to+Model%E2%80%90Informed+Precision+Dosing+for+Antibiotics&rft.jtitle=Clinical+pharmacology+and+therapeutics&rft.au=Wicha%2C+Sebastian+G.&rft.au=M%C3%A4rtson%2C+Anne%E2%80%90Grete&rft.au=Nielsen%2C+Elisabet+I.&rft.au=Koch%2C+Birgit+C.P.&rft.date=2021-04-01&rft.issn=0009-9236&rft.eissn=1532-6535&rft.volume=109&rft.issue=4&rft.spage=928&rft.epage=941&rft_id=info:doi/10.1002%2Fcpt.2202&rft.externalDBID=10.1002%252Fcpt.2202&rft.externalDocID=CPT2202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9236&client=summon