Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem
An O( n 3 ) heuristic algorithm is described for solving d -city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph G defining the TSP and the finding of a minimum cos...
Gespeichert in:
| Veröffentlicht in: | Operations Research Forum Jg. 3; H. 1; S. 20 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.03.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2662-2556, 2662-2556 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | An O(
n
3
) heuristic algorithm is described for solving
d
-city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph
G
defining the TSP and the finding of a minimum cost perfect matching of a certain induced subgraph of
G
. A worst-case analysis of this heuristic shows that the ratio of the answer obtained to the optimum TSP solution is strictly less than 3/2. This represents a 50% reduction over the value 2 which was the previously best known such ratio for the performance of other polynomial growth algorithms for the TSP. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2662-2556 2662-2556 |
| DOI: | 10.1007/s43069-021-00101-z |