Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem
An O( n 3 ) heuristic algorithm is described for solving d -city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph G defining the TSP and the finding of a minimum cos...
Uložené v:
| Vydané v: | Operations Research Forum Ročník 3; číslo 1; s. 20 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.03.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2662-2556, 2662-2556 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | An O(
n
3
) heuristic algorithm is described for solving
d
-city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph
G
defining the TSP and the finding of a minimum cost perfect matching of a certain induced subgraph of
G
. A worst-case analysis of this heuristic shows that the ratio of the answer obtained to the optimum TSP solution is strictly less than 3/2. This represents a 50% reduction over the value 2 which was the previously best known such ratio for the performance of other polynomial growth algorithms for the TSP. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2662-2556 2662-2556 |
| DOI: | 10.1007/s43069-021-00101-z |