Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem

An O( n 3 ) heuristic algorithm is described for solving d -city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph G defining the TSP and the finding of a minimum cos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations Research Forum Ročník 3; číslo 1; s. 20
Hlavní autor: Christofides, Nicos
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.03.2022
Springer Nature B.V
Témata:
ISSN:2662-2556, 2662-2556
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An O( n 3 ) heuristic algorithm is described for solving d -city travelling salesman problems (TSP) whose cost matrix satisfies the triangularity condition. The algorithm involves as substeps the computation of a shortest spanning tree of the graph G defining the TSP and the finding of a minimum cost perfect matching of a certain induced subgraph of G . A worst-case analysis of this heuristic shows that the ratio of the answer obtained to the optimum TSP solution is strictly less than 3/2. This represents a 50% reduction over the value 2 which was the previously best known such ratio for the performance of other polynomial growth algorithms for the TSP.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2662-2556
2662-2556
DOI:10.1007/s43069-021-00101-z