Convergence and Stability of Iteratively Re-weighted Least Squares Algorithms

In this paper, we study the theoretical properties of iteratively re-weighted least squares (IRLS) algorithms and their utility in sparse signal recovery in the presence of noise. We demonstrate a one-to-one correspondence between the IRLS algorithms and a class of Expectation-Maximization (EM) algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 62; číslo 1; s. 183 - 195
Hlavní autoři: Ba, Demba, Babadi, Behtash, Purdon, Patrick L., Brown, Emery N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.01.2014
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we study the theoretical properties of iteratively re-weighted least squares (IRLS) algorithms and their utility in sparse signal recovery in the presence of noise. We demonstrate a one-to-one correspondence between the IRLS algorithms and a class of Expectation-Maximization (EM) algorithms for constrained maximum likelihood estimation under a Gaussian scale mixture (GSM) distribution. The EM formalism, as well as the connection to GSMs, allow us to establish that the IRLS algorithms minimize smooth versions of the lν `norms', for . We leverage EM theory to show that the limit points of the sequence of IRLS iterates are stationary points of the smooth lν "norm" minimization problem on the constraint set. We employ techniques from Compressive Sampling (CS) theory to show that the IRLS algorithm is stable, if the limit point of the iterates coincides with the global minimizer. We further characterize the convergence rate of the IRLS algorithm, which implies global linear convergence for ν = 1 and local super-linear convergence for . We demonstrate our results via simulation experiments. The simplicity of IRLS, along with the theoretical guarantees provided in this contribution, make a compelling case for its adoption as a standard tool for sparse signal recovery.
AbstractList In this paper, we study the theoretical properties of iteratively re-weighted least squares (IRLS) algorithms and their utility in sparse signal recovery in the presence of noise. We demonstrate a one-to-one correspondence between the IRLS algorithms and a class of Expectation-Maximization (EM) algorithms for constrained maximum likelihood estimation under a Gaussian scale mixture (GSM) distribution. The EM formalism, as well as the connection to GSMs, allow us to establish that the IRLS algorithms minimize smooth versions of the lν `norms', for . We leverage EM theory to show that the limit points of the sequence of IRLS iterates are stationary points of the smooth lν "norm" minimization problem on the constraint set. We employ techniques from Compressive Sampling (CS) theory to show that the IRLS algorithm is stable, if the limit point of the iterates coincides with the global minimizer. We further characterize the convergence rate of the IRLS algorithm, which implies global linear convergence for ν = 1 and local super-linear convergence for . We demonstrate our results via simulation experiments. The simplicity of IRLS, along with the theoretical guarantees provided in this contribution, make a compelling case for its adoption as a standard tool for sparse signal recovery.
Author Purdon, Patrick L.
Ba, Demba
Brown, Emery N.
Babadi, Behtash
Author_xml – sequence: 1
  givenname: Demba
  surname: Ba
  fullname: Ba, Demba
  email: demba@neurostat.mit.edu
  organization: Dept. of Brain & Cognitive Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 2
  givenname: Behtash
  surname: Babadi
  fullname: Babadi, Behtash
  email: behtash@nmr.mgh.harvard.edu
  organization: Dept. of Brain & Cognitive Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 3
  givenname: Patrick L.
  surname: Purdon
  fullname: Purdon, Patrick L.
  email: patrickp@nmr.mgh.harvard.edu
  organization: Dept. of Brain & Cognitive Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 4
  givenname: Emery N.
  surname: Brown
  fullname: Brown, Emery N.
  email: enb@neurostat.mit.edu
  organization: Dept. of Brain & Cognitive Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28203508$$DView record in Pascal Francis
BookMark eNp9kM9P20AQhVdVkEpC75V68aVHh1l7fx5RVChSqlYEpN6s8Xo2LDI23V1S5b_HUaCHHjjNO7zvSfPN2WwYB2LsM4cl52DPbze_lhXwellVRisjP7BTbgUvQWg1mzLIupRG__7I5ik9AHAhrDplP1bjsKO4pcFRgUNXbDK2oQ95X4y-uM4UMYcd9fvihsq_FLb3mbpiTZhysfnzjJFScdFvxxjy_WM6Yyce-0SfXu-C3V1-u119L9c_r65XF-vS1bXMpVcolVWi5VqT916QMU4DgoWuFp1vhdUWrTYVou2c5KBAompdp7Q2rq0X7Otx9wmTw95HHFxIzVMMjxj3TWUqqCWYqaeOPRfHlCL5xoU8PTQOOWLoGw7NQV4zyWsO8ppXeRMI_4Fv2-8gX45IIKJ_daUkgID6BTPqfLk
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_sigpro_2020_107853
crossref_primary_10_1016_j_neuroimage_2015_09_048
crossref_primary_10_1109_TAES_2024_3437348
crossref_primary_10_1109_ACCESS_2020_2989452
crossref_primary_10_1109_TVT_2022_3203487
crossref_primary_10_1007_s10107_021_01644_z
crossref_primary_10_1109_TSP_2015_2428216
crossref_primary_10_1016_j_laa_2021_08_024
crossref_primary_10_1667_RADE_22_00012_1
crossref_primary_10_1109_TSIPN_2018_2869117
crossref_primary_10_1007_s10898_021_01093_0
crossref_primary_10_1016_j_measurement_2024_114895
crossref_primary_10_1109_LSP_2018_2875251
crossref_primary_10_1109_TSP_2014_2338839
crossref_primary_10_1109_TCSII_2023_3311814
crossref_primary_10_1109_TSP_2024_3421231
crossref_primary_10_1109_TCI_2016_2516909
crossref_primary_10_1109_TAES_2023_3241886
crossref_primary_10_1109_TSP_2022_3146790
crossref_primary_10_1007_s11336_023_09911_y
crossref_primary_10_1109_TAES_2020_3021809
crossref_primary_10_1016_j_catena_2024_108576
crossref_primary_10_1109_ACCESS_2019_2922322
crossref_primary_10_1109_TBME_2017_2694339
crossref_primary_10_1214_20_STS816
crossref_primary_10_3934_ipi_2017030
crossref_primary_10_1109_LWC_2024_3518206
crossref_primary_10_1109_JSAC_2016_2544578
crossref_primary_10_1109_TKDE_2020_3037131
crossref_primary_10_1007_s10898_023_01361_1
crossref_primary_10_1016_j_jfranklin_2023_01_039
crossref_primary_10_1109_TWC_2022_3175740
crossref_primary_10_1016_j_jsv_2019_06_041
crossref_primary_10_1109_TMC_2021_3108960
crossref_primary_10_7554_eLife_68046
crossref_primary_10_1007_s11277_014_1820_1
crossref_primary_10_1109_ACCESS_2019_2948426
crossref_primary_10_1109_TAES_2025_3527939
crossref_primary_10_1016_j_neuroimage_2022_119496
crossref_primary_10_1109_TWC_2020_3006083
crossref_primary_10_1109_TSP_2016_2601299
crossref_primary_10_1109_TSP_2016_2572041
crossref_primary_10_1109_TII_2019_2899130
crossref_primary_10_1109_TAES_2024_3395233
crossref_primary_10_1038_s41598_025_17068_0
crossref_primary_10_1016_j_jfranklin_2023_11_031
crossref_primary_10_1109_JSTARS_2023_3270309
crossref_primary_10_1073_pnas_1320637111
crossref_primary_10_1109_TWC_2015_2485992
Cites_doi 10.1190/1.3509470
10.1109/TSP.2011.2161470
10.1007/BF01385796
10.1002/mrm.21391
10.1002/cpa.20303
10.1137/060657704
10.1109/TSP.2010.2048103
10.1109/JPROC.2010.2042415
10.1002/cpa.20124
10.2307/3316118
10.1155/2009/162824
10.1214/aos/1176346060
10.1109/78.558475
10.1002/0471725250
10.1109/ICASSP.2008.4518498
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TIT.2011.2159959
10.1007/s00041-008-9045-x
10.1007/978-1-84800-155-8_7
10.2307/1390698
10.1007/978-1-4757-4182-7
10.1109/CISS.2009.5054762
10.1109/TIT.2005.860430
10.1109/TIT.2005.858979
10.1111/j.2517-6161.1974.tb00989.x
10.1109/TIT.2006.871582
10.1109/ICASSP.2008.4518502
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
DOI 10.1109/TSP.2013.2287685
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 195
ExternalDocumentID 28203508
10_1109_TSP_2013_2287685
6650040
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
VH1
AAYOK
IQODW
RIG
ID FETCH-LOGICAL-c335t-f6a56964b177efff4e88c70a090d34dfb4979a9782aa9dc510605a6bcd6778cb3
IEDL.DBID RIE
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330291000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Wed Apr 02 07:24:04 EDT 2025
Tue Nov 18 21:44:03 EST 2025
Sat Nov 29 04:10:30 EST 2025
Tue Aug 26 16:50:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mobile radiocommunication
GSM system
expectation-maximization algorithms
Wireless telecommunication
Iterative method
Compressive sampling
Weighting
Gaussian process
Signal restoration
Gaussian scale mixtures
Simulation
Least squares method
constrained maximum likelihood estimation
Convergence rate
Signal processing
Signal reconstruction
Maximum likelihood
EM algorithm
Compressed sensing
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-f6a56964b177efff4e88c70a090d34dfb4979a9782aa9dc510605a6bcd6778cb3
OpenAccessLink http://hdl.handle.net/1721.1/86328
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TSP_2013_2287685
pascalfrancis_primary_28203508
crossref_primary_10_1109_TSP_2013_2287685
ieee_primary_6650040
PublicationCentury 2000
PublicationDate 2014-Jan.1,
2014-1-00
2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-Jan.1,
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
neelamani (ref6) 2010; 75
ref14
dempster (ref18) 1980
ref33
ref11
ref32
ref10
dempster (ref21) 1977; 39
ref2
ref1
ref17
lange (ref22) 2004
bertsekas (ref27) 2003
ref24
ref23
ref26
bertsekas (ref16) 1999
huber (ref19) 1981; 1
zangwill (ref25) 1969
ref28
ref29
ref8
ref7
grant (ref30) 2011
grant (ref31) 2008
ref9
voronin (ref15) 2012
ref4
ref3
ref5
andrews (ref20) 1974
References_xml – volume: 75
  start-page: wb15
  year: 2010
  ident: ref6
  article-title: Efficient seismic forward modeling using simultaneous random sources and sparsity
  publication-title: Geophys
  doi: 10.1190/1.3509470
– ident: ref29
  doi: 10.1109/TSP.2011.2161470
– ident: ref23
  doi: 10.1007/BF01385796
– ident: ref5
  doi: 10.1002/mrm.21391
– ident: ref14
  doi: 10.1002/cpa.20303
– year: 2003
  ident: ref27
  publication-title: Convex Analysis and Optimization
– ident: ref2
  doi: 10.1137/060657704
– year: 1999
  ident: ref16
  publication-title: Nonlinear Programming
– ident: ref4
  doi: 10.1109/TSP.2010.2048103
– ident: ref3
  doi: 10.1109/JPROC.2010.2042415
– ident: ref33
  doi: 10.1002/cpa.20124
– ident: ref26
  doi: 10.2307/3316118
– ident: ref7
  doi: 10.1155/2009/162824
– ident: ref24
  doi: 10.1214/aos/1176346060
– ident: ref8
  doi: 10.1109/78.558475
– volume: 1
  year: 1981
  ident: ref19
  publication-title: Robust Statistics
  doi: 10.1002/0471725250
– ident: ref11
  doi: 10.1109/ICASSP.2008.4518498
– year: 2011
  ident: ref30
  publication-title: CVX MATLAB Software for Disciplined Convex Programming
– start-page: 35
  year: 1980
  ident: ref18
  publication-title: Multivariate Analysis V
– volume: 39
  start-page: 1
  year: 1977
  ident: ref21
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Royal Statistical Society Series B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref13
  doi: 10.1109/TIT.2011.2159959
– ident: ref32
  doi: 10.1007/s00041-008-9045-x
– start-page: 95
  year: 2008
  ident: ref31
  publication-title: Recent Advances in Learning and Control
  doi: 10.1007/978-1-84800-155-8_7
– ident: ref17
  doi: 10.2307/1390698
– year: 2004
  ident: ref22
  publication-title: Optimization
  doi: 10.1007/978-1-4757-4182-7
– ident: ref12
  doi: 10.1109/CISS.2009.5054762
– ident: ref9
  doi: 10.1109/TIT.2005.860430
– ident: ref28
  doi: 10.1109/TIT.2005.858979
– start-page: 99
  year: 1974
  ident: ref20
  article-title: Scale mixtures of normal distributions
  publication-title: J Royal Statistical Society Series B (Methodological)
  doi: 10.1111/j.2517-6161.1974.tb00989.x
– ident: ref1
  doi: 10.1109/TIT.2006.871582
– year: 1969
  ident: ref25
  publication-title: Nonlinear Programming A Unified Approach
– year: 2012
  ident: ref15
  publication-title: Regularization of linear systems with sparsity constraints with applications to large scale inverse problems
– ident: ref10
  doi: 10.1109/ICASSP.2008.4518502
SSID ssj0014496
Score 2.417005
Snippet In this paper, we study the theoretical properties of iteratively re-weighted least squares (IRLS) algorithms and their utility in sparse signal recovery in...
SourceID pascalfrancis
crossref
ieee
SourceType Index Database
Enrichment Source
Publisher
StartPage 183
SubjectTerms Applied sciences
Compressive sampling
constrained maximum likelihood estimation
Convergence
Convex functions
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
expectation-maximization algorithms
Gaussian scale mixtures
Information, signal and communications theory
mathematical programming
Noise
Random variables
Sampling, quantization
Signal and communications theory
Signal processing algorithms
Signal, noise
Stability analysis
Telecommunications and information theory
Title Convergence and Stability of Iteratively Re-weighted Least Squares Algorithms
URI https://ieeexplore.ieee.org/document/6650040
Volume 62
WOSCitedRecordID wos000330291000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB508aAH3-L6IgcvgnHrNm2a4yKKgor4gL2VNJmosO7qPhT_vZO0lhVE8FZoEspM0pkv8_gA9i359W3nJLeFQy7QINfk5XK0mIhjGZHJtIFsQl5fZ92uupmBw7oWBhFD8hke-ccQy7cDM_FXZa2U3AnadLMwK2Va1mrVEQMhAhcXuQsxTzLZ_Q5JRqp1f3fjc7jiozbBg9SzJk-ZoMCp4jMi9YiE4ko2iykTc7b0v49bhsXKlWSdUvcrMIP9VViYajC4BlcnPqk81Fci033LyLcM2bCfbODYReioTL-73ie7Rf4RbknRskvP58Pu3ia-Nol1eo-D4fP46WW0Dg9np_cn57wiUOAmjpMxd6lOUpUK32IKnXMCs8zISEcqsrGwrhBKKk04sq21soaOJ4EbnRbG-rZypog3oNEf9HETGGlRJLEpkizTQqaGgJqNtIpcQYsguia0vmWam6q7uCe56OUBZUQqJy3kXgt5pYUmHNQzXsvOGn-MXfMCr8dVsm7C3g-11e8JR_qIabb1-7xtmKfVRXmTsgON8XCCuzBn3sfPo-Fe2Fdfoh7MQg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB68QH3wFuuZB18EY9du9sijiKJYi2iFvi3ZZKKF2moPxX_vJF2XCiL4trDJ7jKTbOab6wM4NGTX16xNuMktcoEauSIrl6PBSJwmAR2ZxpNNJI1G2mrJuyk4LmthENEnn-GJu_SxfNPTI-cqq8ZkTtCim4ZZx5xVVGuVMQMhPBsXGQwhj9Kk9R2UDGS1-XDnsrjCkxoBhNjxJk8cQp5VxeVEqgGJxY75LCYOmcvl_33eCiwVxiQ7G2t_FaawuwaLEy0G1-H23KWV-wpLZKprGFmXPh_2k_Usu_Y9lemH1_lk98g_vJ8UDas7Rh_28DZy1UnsrPPU67eHzy-DDXi8vGieX_GCQoHrMIyG3MYqimUsXJMptNYKTFOdBCqQgQmFsbmQiVSEJGtKSaNpgxK8UXGujWssp_NwE2a6vS5uASM9iijUeZSmSiSxJqhmAiUDm9NDEG0Fqt8yzXTRX9zRXHQyjzMCmZEWMqeFrNBCBY7KGa_j3hp_jF13Ai_HFbKuwP4PtZX3CUm6mGm6_fu8A5i_at7Ws_p142YHFuhNYuxX2YWZYX-EezCn34ftQX_fr7EvcCrPiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+and+Stability+of+Iteratively+Re-weighted+Least+Squares+Algorithms&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=BA%2C+Demba&rft.au=BABADI%2C+Behtash&rft.au=PURDON%2C+Patrick+L&rft.au=BROWN%2C+Emery+N&rft.date=2014&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1053-587X&rft.volume=62&rft.issue=1-4&rft.spage=183&rft.epage=195&rft_id=info:doi/10.1109%2FTSP.2013.2287685&rft.externalDBID=n%2Fa&rft.externalDocID=28203508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon