Graph marginalization for rapid assignment in wide-area surveillance

Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ad hoc networks Ročník 9; číslo 2; s. 180 - 188
Hlavní autoři: Ebden, Mark, Roberts, Stephen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2011
Témata:
ISSN:1570-8705, 1570-8713
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1570-8705
1570-8713
DOI:10.1016/j.adhoc.2010.06.002