Graph marginalization for rapid assignment in wide-area surveillance

Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ad hoc networks Ročník 9; číslo 2; s. 180 - 188
Hlavní autori: Ebden, Mark, Roberts, Stephen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.03.2011
Predmet:
ISSN:1570-8705, 1570-8713
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1570-8705
1570-8713
DOI:10.1016/j.adhoc.2010.06.002