The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions

In this paper, we study the convergence rate of the gradient (or steepest descent) method with fixed step lengths for finding a stationary point of an L -smooth function. We establish a new convergence rate, and show that the bound may be exact in some cases, in particular when all step lengths lie...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization letters Ročník 16; číslo 6; s. 1649 - 1661
Hlavní autori: Abbaszadehpeivasti, Hadi, de Klerk, Etienne, Zamani, Moslem
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Predmet:
ISSN:1862-4472, 1862-4480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study the convergence rate of the gradient (or steepest descent) method with fixed step lengths for finding a stationary point of an L -smooth function. We establish a new convergence rate, and show that the bound may be exact in some cases, in particular when all step lengths lie in the interval (0, 1/ L ]. In addition, we derive an optimal step length with respect to the new bound.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-021-01821-1