The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions
In this paper, we study the convergence rate of the gradient (or steepest descent) method with fixed step lengths for finding a stationary point of an L -smooth function. We establish a new convergence rate, and show that the bound may be exact in some cases, in particular when all step lengths lie...
Uložené v:
| Vydané v: | Optimization letters Ročník 16; číslo 6; s. 1649 - 1661 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2022
|
| Predmet: | |
| ISSN: | 1862-4472, 1862-4480 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we study the convergence rate of the gradient (or steepest descent) method with fixed step lengths for finding a stationary point of an
L
-smooth function. We establish a new convergence rate, and show that the bound may be exact in some cases, in particular when all step lengths lie in the interval (0, 1/
L
]. In addition, we derive an optimal step length with respect to the new bound. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-021-01821-1 |