On General Position Sets in Cartesian Products
The general position number gp ( G ) of a connected graph G is the cardinality of a largest set S of vertices such that no three distinct vertices from S lie on a common geodesic; such sets are refereed to as gp-sets of G . The general position number of cylinders P r □ C s is deduced. It is proved...
Uloženo v:
| Vydáno v: | Resultate der Mathematik Ročník 76; číslo 3 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.08.2021
|
| Témata: | |
| ISSN: | 1422-6383, 1420-9012 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The general position number
gp
(
G
)
of a connected graph
G
is the cardinality of a largest set
S
of vertices such that no three distinct vertices from
S
lie on a common geodesic; such sets are refereed to as gp-sets of
G
. The general position number of cylinders
P
r
□
C
s
is deduced. It is proved that
gp
(
C
r
□
C
s
)
∈
{
6
,
7
}
whenever
r
≥
s
≥
3
,
s
≠
4
, and
r
≥
6
. A probabilistic lower bound on the general position number of Cartesian graph powers is achieved. Along the way a formula for the number of gp-sets in
P
r
□
P
s
, where
r
,
s
≥
2
, is also determined. |
|---|---|
| ISSN: | 1422-6383 1420-9012 |
| DOI: | 10.1007/s00025-021-01438-x |