Bounded below composition operators on the space of Bloch functions on the unit ball of a Hilbert space

Let B E be the open unit ball of a complex finite or infinite dimensional Hilbert space E and consider the space B ( B E ) of Bloch functions on B E . Using Lipschitz continuity of the dilation map on B E given by x ↦ ( 1 - ‖ x ‖ 2 ) R f ( x ) for x ∈ B E , where R f denotes the radial derivative of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Banach journal of mathematical analysis Ročník 17; číslo 4
Hlavný autor: Miralles, Alejandro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.10.2023
Predmet:
ISSN:2662-2033, 1735-8787
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Let B E be the open unit ball of a complex finite or infinite dimensional Hilbert space E and consider the space B ( B E ) of Bloch functions on B E . Using Lipschitz continuity of the dilation map on B E given by x ↦ ( 1 - ‖ x ‖ 2 ) R f ( x ) for x ∈ B E , where R f denotes the radial derivative of f ∈ B ( B E ) , we study when a composition operator on B ( B E ) is bounded below.
ISSN:2662-2033
1735-8787
DOI:10.1007/s43037-023-00295-w