Wettability of soft PLGA surfaces predicted by experimentally augmented atomistic models

A challenging topic in surface engineering is predicting the wetting properties of soft interfaces with different liquids. However, a robust computational protocol suitable for predicting wettability with molecular precision is still lacking. In this article, we propose a workflow based on molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin Jg. 48; H. 2; S. 108 - 117
Hauptverfasser: Bellussi, Francesco Maria, Roscioni, Otello Maria, Rossi, Edoardo, Cardellini, Annalisa, Provenzano, Marina, Persichetti, Luca, Kudryavtseva, Valeriya, Sukhorukov, Gleb, Asinari, Pietro, Sebastiani, Marco, Fasano, Matteo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.02.2023
Schlagworte:
ISSN:0883-7694, 1938-1425
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A challenging topic in surface engineering is predicting the wetting properties of soft interfaces with different liquids. However, a robust computational protocol suitable for predicting wettability with molecular precision is still lacking. In this article, we propose a workflow based on molecular dynamics simulations to predict the wettability of polymer surfaces and test it against the experimental contact angle of several polar and nonpolar liquids, namely water, formamide, toluene, and hexane. The specific case study addressed here focuses on a poly(lactic- co -glycolic acid) (PLGA) flat surface, but the proposed experimental-modeling protocol may have broader fields of application. The structural properties of PLGA slabs have been modeled on the surface roughness determined with microscopy measurements, while the computed surface tensions and contact angles were validated against standardized characterization tests, reaching a discrepancy of less than 3% in the case of water. Overall, this work represents the initial step toward an integrated multiscale framework for predicting the wettability of more complex soft interfaces, which will eventually take into account the effect of surface topology at higher scales and synergically be employed with experimental characterization techniques. Impact statement Controlling the wettability of surfaces has important implications for energy (e.g., self-cleaning solar panels), mechanical (e.g., enhanced heat transfer), chemical (e.g., fluids separation), and biomedical (e.g., implants biocompatibility) industries. Wetting properties arise from a combination of chemical and physical features of surfaces, which are inherently intertwined and multiscale. Therefore, tailoring wettability to target functionalities is a time-intensive process, especially if relying on a trial-and-error approach only. This becomes even more challenging with soft materials, since their surface configuration depends on the solid-liquid interactions at the molecular level and could not be defined a priori . The improved accuracy of atomistic models allows detailing how the effective properties of materials arise from their nanoscale features. In this article, we propose and validate a new molecular dynamics protocol for assessing the wettability of soft interfaces with polar and nonpolar liquids. The prediction capabilities of simulations are augmented by a close comparison with microscopy and contact angle experiments. Since smooth copolymer surfaces are considered, here the effort mainly focuses on the effect of chemical features on wettability. In perspective, the proposed atomistic in silico approach could be coupled with computational models at higher scales to include the effect of surface microstructures, eventually easing the development of multi-scale surfaces with tunable wettability. Graphical abstract
AbstractList A challenging topic in surface engineering is predicting the wetting properties of soft interfaces with different liquids. However, a robust computational protocol suitable for predicting wettability with molecular precision is still lacking. In this article, we propose a workflow based on molecular dynamics simulations to predict the wettability of polymer surfaces and test it against the experimental contact angle of several polar and nonpolar liquids, namely water, formamide, toluene, and hexane. The specific case study addressed here focuses on a poly(lactic- co -glycolic acid) (PLGA) flat surface, but the proposed experimental-modeling protocol may have broader fields of application. The structural properties of PLGA slabs have been modeled on the surface roughness determined with microscopy measurements, while the computed surface tensions and contact angles were validated against standardized characterization tests, reaching a discrepancy of less than 3% in the case of water. Overall, this work represents the initial step toward an integrated multiscale framework for predicting the wettability of more complex soft interfaces, which will eventually take into account the effect of surface topology at higher scales and synergically be employed with experimental characterization techniques. Impact statement Controlling the wettability of surfaces has important implications for energy (e.g., self-cleaning solar panels), mechanical (e.g., enhanced heat transfer), chemical (e.g., fluids separation), and biomedical (e.g., implants biocompatibility) industries. Wetting properties arise from a combination of chemical and physical features of surfaces, which are inherently intertwined and multiscale. Therefore, tailoring wettability to target functionalities is a time-intensive process, especially if relying on a trial-and-error approach only. This becomes even more challenging with soft materials, since their surface configuration depends on the solid-liquid interactions at the molecular level and could not be defined a priori . The improved accuracy of atomistic models allows detailing how the effective properties of materials arise from their nanoscale features. In this article, we propose and validate a new molecular dynamics protocol for assessing the wettability of soft interfaces with polar and nonpolar liquids. The prediction capabilities of simulations are augmented by a close comparison with microscopy and contact angle experiments. Since smooth copolymer surfaces are considered, here the effort mainly focuses on the effect of chemical features on wettability. In perspective, the proposed atomistic in silico approach could be coupled with computational models at higher scales to include the effect of surface microstructures, eventually easing the development of multi-scale surfaces with tunable wettability. Graphical abstract
Author Kudryavtseva, Valeriya
Sukhorukov, Gleb
Cardellini, Annalisa
Rossi, Edoardo
Asinari, Pietro
Fasano, Matteo
Persichetti, Luca
Bellussi, Francesco Maria
Roscioni, Otello Maria
Provenzano, Marina
Sebastiani, Marco
Author_xml – sequence: 1
  givenname: Francesco Maria
  surname: Bellussi
  fullname: Bellussi, Francesco Maria
  organization: Department of Energy, Politecnico di Torino
– sequence: 2
  givenname: Otello Maria
  surname: Roscioni
  fullname: Roscioni, Otello Maria
  organization: MaterialX Ltd., Easton Business Centre
– sequence: 3
  givenname: Edoardo
  surname: Rossi
  fullname: Rossi, Edoardo
  organization: Department of Engineering, Università degli studi Roma Tre
– sequence: 4
  givenname: Annalisa
  surname: Cardellini
  fullname: Cardellini, Annalisa
  organization: Department of Energy, Politecnico di Torino
– sequence: 5
  givenname: Marina
  surname: Provenzano
  fullname: Provenzano, Marina
  organization: Department of Energy, Politecnico di Torino
– sequence: 6
  givenname: Luca
  surname: Persichetti
  fullname: Persichetti, Luca
  organization: Department of Science, Università degli studi Roma Tre, Department of Physics, Tor Vergata University
– sequence: 7
  givenname: Valeriya
  surname: Kudryavtseva
  fullname: Kudryavtseva, Valeriya
  organization: School of Engineering and Materials Science, Queen Mary University of London
– sequence: 8
  givenname: Gleb
  surname: Sukhorukov
  fullname: Sukhorukov, Gleb
  organization: School of Engineering and Materials Science, Queen Mary University of London
– sequence: 9
  givenname: Pietro
  surname: Asinari
  fullname: Asinari, Pietro
  organization: Department of Energy, Politecnico di Torino, Istituto Nazionale di Ricerca Metrologica
– sequence: 10
  givenname: Marco
  surname: Sebastiani
  fullname: Sebastiani, Marco
  email: marco.sebastiani@uniroma3.it
  organization: Department of Engineering, Università degli studi Roma Tre
– sequence: 11
  givenname: Matteo
  orcidid: 0000-0002-3997-3681
  surname: Fasano
  fullname: Fasano, Matteo
  email: matteo.fasano@polito.it
  organization: Department of Energy, Politecnico di Torino
BookMark eNp9kMtKAzEUhoNUsFZfwFVeIJrJpUmWpWgVCrpQdBcyuZSU6aQkKThv79S6ctHVOXD-78D_XYNJn3oPwF2D7xvOxUNhlAuBMCEIYyoxUhdg2igqUcMIn4AplpIiMVfsClyXssW44VjwKfj69LWaNnaxDjAFWFKo8G29WsByyMFYX-A-exdt9Q62A_Tfe5_jzvfVdN0AzWFz3MebqWkXS40W7pLzXbkBl8F0xd_-zRn4eHp8Xz6j9evqZblYI0spr8jKOW2VU4GxBnNprMKWExPmVAZOW0vmxjEaiHBKchNYi60iLRPejQ2EcHQG5OmvzamU7IO2sZoaU1-ziZ1usD4a0idDejSkfw1pNaLkH7ofq5k8nIfoCSpjuN_4rLfpkPux4jnqB_G6fLQ
CitedBy_id crossref_primary_10_1007_s00894_024_06023_x
crossref_primary_10_1557_s43577_022_00423_1
crossref_primary_10_1021_acs_jpcb_4c07518
crossref_primary_10_3390_s24237665
Cites_doi 10.1021/ct200908r
10.1021/acs.jctc.5b00080
10.1134/S1560090416060191
10.1021/acsnano.8b04632
10.1557/mrs.2016.139
10.1021/acs.jpcb.9b02797
10.1098/rstl.1805.0005
10.1039/C5GC02725J
10.1016/j.physleta.2016.03.015
10.1016/j.csite.2018.06.005
10.1103/PhysRevE.92.052403
10.1002/anie.201702945
10.1016/S0169-4332(01)00432-9
10.1021/acs.jpcc.5b10267
10.1088/0256-307X/22/4/002
10.1557/mrs.2013.26
10.1007/s10404-021-02455-6
10.1557/mrs.2020.271
10.1002/app.51242
10.1021/acs.macromol.0c01593
10.1021/acs.jpcc.7b00484
10.1557/s43578-021-00127-3
10.1039/C4TA06347C
10.1063/5.0057145
10.1038/s41598-019-54751-5
10.1021/ct300976t
10.1021/acs.macromol.0c00110
10.1021/nn2005393
10.1039/C8CP03762K
10.1016/j.apsusc.2019.144002
10.1016/j.mtchem.2017.02.006
10.1021/jp209024r
10.1021/ct200731v
10.1039/D0NR05392A
10.1006/jcph.1995.1039
10.1002/adfm.201200988
10.1063/1.1747248
10.1103/PhysRevFluids.3.074201
10.1039/TF9444000546
10.1088/0957-4484/17/19/033
10.1073/pnas.1616138113
10.1016/j.polymer.2020.122903
10.1063/1.2715577
10.1103/RevModPhys.81.739
10.1021/acs.nanolett.8b04335
10.1021/j100834a012
10.1016/j.cej.2021.133052
10.1557/mrs.2013.99
10.1016/j.saa.2021.120140
10.3390/ijms15033640
10.1016/j.jmb.2021.166841
10.1021/ie50320a024
10.1186/1758-2946-4-17
10.1021/j100308a038
10.1163/156856201744425
10.1063/1.2121687
10.1016/j.cej.2021.133036
10.2478/s11534-011-0096-2
10.1021/acs.langmuir.5b01394
10.1016/j.jconrel.2013.08.024
10.1063/1.479595
10.3390/polym3031377
10.1016/j.matdes.2021.109902
10.1016/J.CIS.2009.07.003
10.1038/s41467-019-12093-w
10.5281/zenodo.6629427
10.1016/j.polymer.2015.12.052
10.1021/acs.jpcb.1c07642
10.1021/acs.jpclett.0c01793
10.1016/j.jcis.2011.04.051
10.1021/acs.jpcb.9b06681
10.1017/jfm.2015.517
10.1021/acs.macromol.0c02234
10.1063/1.4821604
10.1039/C9CP04120F
10.1002/app.1969.070130815
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
DOI 10.1557/s43577-022-00380-9
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1938-1425
EndPage 117
ExternalDocumentID 10_1557_s43577_022_00380_9
GrantInformation_xml – fundername: Politecnico di Torino
– fundername: H2020 Industrial Leadership
  grantid: 760827
  funderid: http://dx.doi.org/10.13039/100010667
GroupedDBID -2P
-2V
-E.
.FH
0E1
0R~
123
2JN
4.4
406
5VS
74X
74Y
7~V
8FE
8FG
8UJ
AAAZR
AABES
AABWE
AACDK
AACJH
AAEWM
AAGFV
AAHNG
AAJBT
AAKTX
AARAB
AASML
AATID
AATMM
AATNV
AAUKB
ABAKF
ABBXD
ABECU
ABEFU
ABGDZ
ABJCF
ABJNI
ABKKG
ABMQK
ABMWE
ABQTM
ABROB
ABTEG
ABTKH
ABTMW
ABZCX
ABZUI
ACAOD
ACBEA
ACBEK
ACBMC
ACDTI
ACETC
ACGFS
ACHSB
ACIMK
ACIWK
ACPIV
ACQPF
ACRPL
ACUIJ
ACXSD
ACZBM
ACZOJ
ACZUX
ADCGK
ADFEC
ADNMO
ADOVH
ADOVT
AEBAK
AEFQL
AEHGV
AEMFK
AEMSY
AEMTW
AENEX
AENGE
AESKC
AEYYC
AFBBN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFQWF
AFUTZ
AGLWM
AGMZJ
AGQEE
AHQXX
AIGIU
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
AKYQF
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMTXH
AMXSW
AMYLF
ARABE
ARZZG
ATUCA
AUXHV
AYIQA
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BMAJL
BQFHP
C0O
C6C
CBIIA
CCPQU
CCUQV
CFAFE
CFBFF
CGQII
CZ9
D1I
DC4
DOHLZ
DPUIP
EBLON
EBS
EJD
FIGPU
HCIFZ
HG-
HST
HZ~
I.6
I.7
I.9
IH6
IKXTQ
IOEEP
IOO
IS6
IWAJR
I~P
J36
J38
J3A
JHPGK
JKPOH
JQKCU
JZLTJ
KAFGG
KB.
KC.
KCGVB
KFECR
L98
LHUNA
LLZTM
M-V
M7~
M8.
NIKVX
NPVJJ
NQJWS
O9-
PDBOC
PYCCK
RAMDC
RCA
RNS
ROL
RR0
RSV
S0W
S6-
S6U
SAAAG
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
T9M
TN5
UT1
WQ3
WXU
WXY
ZDLDU
ZE2
ZJOSE
ZMEZD
ZYDXJ
~V1
AAUYE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c335t-c863b9d9f441058ac90c52af638f53bc26ad43f27d985af4b0c92b47ed01577d3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852931100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0883-7694
IngestDate Tue Nov 18 21:21:05 EST 2025
Sat Nov 29 03:39:10 EST 2025
Fri Feb 21 02:43:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nanoscale
Polymer
Interface
Computation/computing
Fluid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-c863b9d9f441058ac90c52af638f53bc26ad43f27d985af4b0c92b47ed01577d3
ORCID 0000-0002-3997-3681
OpenAccessLink https://link.springer.com/10.1557/s43577-022-00380-9
PageCount 10
ParticipantIDs crossref_citationtrail_10_1557_s43577_022_00380_9
crossref_primary_10_1557_s43577_022_00380_9
springer_journals_10_1557_s43577_022_00380_9
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle MRS bulletin
PublicationTitleAbbrev MRS Bulletin
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Z. Zhang, X. Wang, R. Zhu, Y. Wang, B. Li, Y. Ma, Y. Yin, Polym. Sci. Ser. B58, 720 (2016). https://doi.org/10.1134/S1560090416060191
BellussiFMRoscioniOMRicciMFasanoMJ. Phys. Chem. B20211254312020120271:CAS:528:DC%2BB3MXitlWmurzO10.1021/acs.jpcb.1c07642
WenzelRNInd. Eng. Chem.19362889889941:CAS:528:DyaA28Xkslentg%3D%3D10.1021/ie50320a024
ProdhanSQiuJRicciMRoscioniOMWangLBeljonneDJ. Phys. Chem. Lett.20201116651965251:CAS:528:DC%2BB3cXhsVaqsbrM10.1021/acs.jpclett.0c01793
CassieABDBaxterSTrans. Faraday Soc.1944405465511:CAS:528:DyaH2MXhsFKqsA%3D%3D10.1039/TF9444000546
JohanssonPCarlsonAHessBJ. Fluid Mech.20157816957111:CAS:528:DC%2BC2MXhvValtbnK10.1017/jfm.2015.517
CardelliniAFasanoMChiavazzoEAsinariPPhys. Lett. A201638020173517401:CAS:528:DC%2BC28XktlKhtLo%3D10.1016/j.physleta.2016.03.015
X.S. Wu, N. Wang, J. Biomater. Sci. Polym. Ed.12(1), 21 (2001). https://doi.org/10.1163/156856201744425
T. Young III, Philos. Trans. R. Soc. Lond.95, 65 (1805). https://doi.org/10.1098/rstl.1805.0005
LiuHLiYKrauseWERojasOJPasquinelliMAJ. Phys. Chem. B20121165157015781:CAS:528:DC%2BC38XhsVyrs7c%3D10.1021/jp209024r
RossiEMPhaniPSGuillemetRCholetJJusseyDOliverWCSebastianiMJournal of Materials Research20213611235723701:CAS:528:DC%2BB3MXitFSgtb7F10.1557/s43578-021-00127-3
YaghoubiHForoutanMAppl. Surf. Sci.20205001:CAS:528:DC%2BC1MXhvFGmurbJ10.1016/j.apsusc.2019.144002
JungYCBhushanBNanotechnology20061719497049801:CAS:528:DC%2BD28Xht1Klt7fF10.1088/0957-4484/17/19/033
HanwellMDCurtisDELonieDCVandermeerschTZurekEHutchisonGRJ. Cheminf.2012411171:CAS:528:DC%2BC3sXhsVGksLg%3D10.1186/1758-2946-4-17
PeiKYingYChuCMater. Today Chem.20174909610.1016/j.mtchem.2017.02.006
MatesJEIbrahimRVeraAGuggenheimSQinJCalewartsDWaldroupDEMegaridisCMGreen Chem.2016187218521921:CAS:528:DC%2BC2MXhvFClu7vN10.1039/C5GC02725J
AndrewsJBlaisten-BarojasEJ. Phys. Chem. B20191234810233102441:CAS:528:DC%2BC1MXitFagtbbP10.1021/acs.jpcb.9b06681
LeroyFMüller-PlatheFLangmuir20153130833583451:CAS:528:DC%2BC2MXhtFGisL7L10.1021/acs.langmuir.5b01394
Hong-KaiGHai-PingFChin. Phys. Lett.200522478710.1088/0256-307X/22/4/002
ChenQZhangXChenKWuXZongTFengCZhangDChem. Eng. J.20224301:CAS:528:DC%2BB3MXitlamsbzJ10.1016/j.cej.2021.133036
ParentMNouvelCKoerberMSapinAMaincentPBoudierAJ. Controlled Release201317212923041:CAS:528:DC%2BC3sXhslOku77K10.1016/j.jconrel.2013.08.024
FasanoMBevilacquaAChiavazzoEHumplikTAsinariPSci. Rep.2019911121:CAS:528:DC%2BC1MXitlGhsrnI10.1038/s41598-019-54751-5
LiowSSKarimAALohXJMRS Bull.20164175575661:CAS:528:DC%2BC28XhtFOjt7fF10.1557/mrs.2016.139
ZhangJBorgMKSefianeKReeseJMPhys. Rev. E201592510.1103/PhysRevE.92.052403
European Committee for Standardization: CEN Workshop Agreement CWA 17284: Materials modelling - Terminology, classification and metadata (2018). https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf
VegaCde MiguelEJ. Chem. Phys.2007126151:CAS:528:DC%2BD2sXkvF2rsbo%3D10.1063/1.2715577
R.J. Good, L.A. Girifalco, J. Phys. Chem.64(5), 561 (1960). https://doi.org/10.1021/j100834a012
Govind RajanAStranoMSBlankschteinDNano Lett.2019193153915511:CAS:528:DC%2BC1MXitVChtbo%3D10.1021/acs.nanolett.8b04335
A. Pérez de la Luz, G.A. Méndez-Maldonado, E. Núñez-Rojas, F. Bresme, J. Alejandre, J. Chem. Theory Comput.11(6), 2792 (2015). https://doi.org/10.1021/acs.jctc.5b00080
European Committee for Standardization: CEN Workshop Agreement CWA 17815: Materials characterisation - Terminology, metadata and classification (2021). https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/ICT/cwa17815.pdf
XuYKooDGersteinEAKimC-SPolymer2016841211311:CAS:528:DC%2BC28Xlt1akuw%3D%3D10.1016/j.polymer.2015.12.052
BuehlerMJMRS Bull.20133821691761:CAS:528:DC%2BC3sXksVGksr0%3D10.1557/mrs.2013.26
KoishiTYasuokaKFujikawaSZengXCACS Nano201159683468421:CAS:528:DC%2BC3MXhtVKhtLbO10.1021/nn2005393
R. Mažeikienė, G. Niaura, A. Malinauskas, Spectrochim. Acta AMol. Biomol. Spectrosc. 262, 120140 (2021). https://doi.org/10.1016/j.saa.2021.120140
GerberJLendenmannTEghlidiHSchutziusTMPoulikakosDNat. Commun.20191011101:CAS:528:DC%2BC1MXitValtLfL10.1038/s41467-019-12093-w
YangH-CXieYChanHNarayananBChenLWaldmanRZSankaranarayananSKElamJWDarlingSBACS Nano2018128867886851:CAS:528:DC%2BC1cXhsFWhtbrK10.1021/acsnano.8b04632
A.I. Jewett, D. Stelter, J. Lambert, S.M. Saladi, O.M. Roscioni, M. Ricci, L. Autin, M. Maritan, S.M. Bashusqeh, T. Keyes, R.T. Dame, J.-E. Shea, G.J. Jensen, D.S. Goodsell, J. Mol. Biol.433(11), 166841 (2021). https://doi.org/10.1016/j.jmb.2021.166841
SedinDLRowlenKLApplied Surface Science2001182140481:CAS:528:DC%2BD3MXnt1aqurw%3D10.1016/S0169-4332(01)00432-9
ZhangLLuanBZhouRJ. Phys. Chem. B201912334724372521:CAS:528:DC%2BC1MXhsFShtLrF10.1021/acs.jpcb.9b02797
WongT-SSunTFengLAizenbergJMRS Bull.20133853663711:CAS:528:DC%2BC3sXnvV2msLY%3D10.1557/mrs.2013.99
ZubillagaRALabastidaACruzBMartínezJCSánchezEAlejandreJJ. Chem. Theory Comput.201393161116151:CAS:528:DC%2BC3sXht1Kksrw%3D10.1021/ct300976t
KhodayariAFasanoMBigdeliMBMohammadnejadSChiavazzoEAsinariPCase Stud. Therm. Eng.20181245446110.1016/j.csite.2018.06.005
NečasDKlapetekPCent. Eur. J. Phys.20121018118810.2478/s11534-011-0096-2
Chemical & Physical Properties of Select Polymers (n.d.). https://www.absorbables.com/technical/properties
AndrewsJHandlerRABlaisten-BarojasEPolymer20202061:CAS:528:DC%2BB3cXhs1Sru7jO10.1016/j.polymer.2020.122903
MasuduzzamanMKimBMicrofluid. Nanofluid.202125611410.1007/s10404-021-02455-6
CalemanCvan MaarenPJHongMHubJSCostaLTvan der SpoelDJ. Chem. Theory Comput.20128161741:CAS:528:DC%2BC3MXhsF2itrbE10.1021/ct200731v
AbascalJLFVegaCJ. Chem. Phys.2005123231:CAS:528:DC%2BD28XltVOg10.1063/1.2121687
W.F. van Gunsteren, X. Daura, N. Hansen, A.E. Mark, C. Oostenbrink, S. Riniker, L.J. Smith, Angew. Chem. Int. Ed.57(4), 884 (2018). https://doi.org/10.1002/anie.201702945
WangPZhengGDaiKLiuCShenCChem. Eng. J.20224301:CAS:528:DC%2BB3MXitlamsb3K10.1016/j.cej.2021.133052
BormashenkoEJ. Colloid Interface Sci.201136013173191:CAS:528:DC%2BC3MXmvFymsro%3D10.1016/j.jcis.2011.04.051
PlimptonSJ. Comput. Phys.199511711191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039
S.W.I. Siu, K. Pluhackova, R.A. Böckmann, J. Chem. Theory Comput.8(4), 1459 (2012) https://doi.org/10.1021/ct200908r. https://doi.org/10.1021/ct200908r
LAMMPS Molecular Dynamics Simulator (n.d.). https://www.lammps.org
WangWLiHLiQLuoZJ. Appl. Polym. Sci.202113842512421:CAS:528:DC%2BB3MXhsFSks7%2FK10.1002/app.51242
GuitonBSStefikMAugustynVBanerjeeSBardeenCJBartlettBMLiJLópez-MejíasVMacGillivrayLRMorrisAMRS Bull.2020451195196410.1557/mrs.2020.271
M. Ricci, O.M. Roscioni, L. Querciagrossa, C. Zannoni, Phys. Chem. Chem. Phys.21, 26195 (2019). https://doi.org/10.1039/C9CP04120F
GentilePChionoVCarmagnolaIHattonPVInt. J. Mol. Sci.2014153364036591:CAS:528:DC%2BC2cXhtlWhtbjI10.3390/ijms15033640
PannuzzoMHortaBACLa RosaCDecuzziPMacromolecules20205310364336541:CAS:528:DC%2BB3cXovF2isrw%3D10.1021/acs.macromol.0c00110
CardelliniAMaria BellussiFRossiEChiavariniLBeckerCCantDAsinariPSebastianiMMater. Des.20212081:CAS:528:DC%2BB3MXhsVWitLfE10.1016/j.matdes.2021.109902
Jmol: An open-source Java viewer for chemical structures in 3D (n.d.). http://www.jmol.org
CottenyeNAnselmeKPlouxLVebert-NardinCAdv. Funct. Mater.2012222348911:CAS:528:DC%2BC38XhtVKntbvK10.1002/adfm.201200988
ZhuCGaoYLiHMengSLiLFranciscoJSZengXCProc. Natl. Acad. Sci. U.S.A.20161134612946129511:CAS:528:DC%2BC28XhslKmtrnP10.1073/pnas.1616138113
YehI-CBerkowitzMLJ. Chem. Phys.19991117315531621:CAS:528:DyaK1MXkslyht7o%3D10.1063/1.479595
BonnDEggersJIndekeuJMeunierJRolleyERev. Mod. Phys.2009817398051:CAS:528:DC%2BD1MXnsFCgur8%3D10.1103/RevModPhys.81.739
MakadiaHKSiegelSJPolymers201133137713971:CAS:528:DC%2BC3MXhtFOis7jJ10.3390/polym3031377
P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia, “MeshLab: An Open-Source Mesh Processing Tool,” in Proceedings of the Eurographics Italian Chapter Conference (Eurographics Association, 2008), pp. 129. https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
F.M. Bellussi, O.M. Roscioni, A. Cardellini, M. Provenzano, M. Fasano, Zenodo (2022). https://doi.org/10.5281/zenodo.6629427
GaoYYaoWSunJZhangHWangZWangLYangDZhangLYangHJ. Mater. Chem. A20153107381:CAS:528:DC%2BC2MXks1ejs78%3D10.1039/C4TA06347C
Dortmund Data Bank, Surface Tension of Hexane (n.d.). http://www.ddbst.com/en/EED/PCP/SFT_C89.php
KirkwoodJGBuffFPJ. Chem. Phys.19491733383431:CAS:528:DyaH1MXivVOlug%3D%3D10.1063/1.1747248
DelabieJDe WinterJDeschaumeOBarticCGerbauxPVerbiestTKoeckelberghsGMacromolecules2020532411098111051:CAS:528:DC%2BB3cXisVejt7%2FL10.1021/acs.macromol.0c01593
NguyenTTKhuatHTTAsakuraSMizutaniGMurakamiYOkadaTJ. Chem. Phys.202115581:CAS:528:DC%2BB3MXhvV2rs7rE10.1063/5.0057145
LeroyFLiuSZhangJJ. Phys. Chem. C20151195128470284811:CAS:528:DC%2BC2MXhvFWrsLnK10.1021/acs.jpcc.5b10267
Avogadro: An open-source molecular builder and visualization tool, version 1.XX (n.d.). http://avogadro.cc
V. Sresht, A. Govind Rajan, E. Bordes, M.S. Strano, A.A.H. Pádua, D. Blankschtein, J. Phys. Chem. C121(16), 9022 (2017). https://doi.org/10.1021/acs.jpcc.7b00484
YaghoubiHForoutanMPhys. Chem. Chem. Phys.20182022308223191:CAS:528:DC%2BC1cXhsVCnsbrJ10.1039/C8CP03762K
OzcelikHGSatirogluEBarisikMNanoscale2020124121376213911:CAS:528:DC%2BB3cXhvFajsbnF10.1039/D0NR05392A
OwensDKWendtRCJ. Appl. Polym. Sci.1969138174117471:CAS:528:DyaF1MXltFegtLc%3D10.1002/app.1969.070130815
JohanssonPHessBPhys. Rev. Fluids2018310.1103/PhysRevFluids.3.074201
ChauTTBruckardWJKohPTLNguyenAVAdv. Colloid Interface Sci.200915021061151:CAS:528:DC%2BD1MXpvFaqtL8%3D10.1016/J.CIS.2009.07.003
BallalDChapmanWGJ. Chem. Phys.2013139111:CAS:528:DC%2BC3sXhsV2jsLfL10.1063/1.4821604
EthaSADesaiPRSacharHSDasSMacromolecules20215425845961:CAS:528:DC%2BB3MXptVyjtA%3D%3D10.1021/acs.macromol.0c02234
BerendsenHJCGrigeraJRStraatsmaTPJ. Phys. Chem.19879124626962711:CAS:528:DyaL2sXmt1els7w%3D10.1021/j100308a038
SA Etha (380_CR40) 2021; 54
JLF Abascal (380_CR75) 2005; 123
P Gentile (380_CR83) 2014; 15
D Bonn (380_CR22) 2009; 81
H Yaghoubi (380_CR34) 2018; 20
380_CR82
W Wang (380_CR13) 2021; 138
N Cottenye (380_CR2) 2012; 22
M Masuduzzaman (380_CR58) 2021; 25
P Wang (380_CR10) 2022; 430
YC Jung (380_CR52) 2006; 17
G Hong-Kai (380_CR56) 2005; 22
HG Ozcelik (380_CR62) 2020; 12
MJ Buehler (380_CR21) 2013; 38
J Zhang (380_CR57) 2015; 92
H Yaghoubi (380_CR35) 2020; 500
C Zhu (380_CR39) 2016; 113
380_CR74
JE Mates (380_CR6) 2016; 18
RN Wenzel (380_CR25) 1936; 28
380_CR37
DK Owens (380_CR16) 1969; 13
RA Zubillaga (380_CR49) 2013; 9
380_CR79
A Cardellini (380_CR33) 2021; 208
C Vega (380_CR50) 2007; 126
380_CR78
M Pannuzzo (380_CR67) 2020; 53
TT Chau (380_CR53) 2009; 150
FM Bellussi (380_CR61) 2021; 125
380_CR73
T Koishi (380_CR36) 2011; 5
380_CR71
S Plimpton (380_CR72) 1995; 117
380_CR70
L Zhang (380_CR31) 2019; 123
T-S Wong (380_CR20) 2013; 38
H Liu (380_CR38) 2012; 116
M Fasano (380_CR9) 2019; 9
380_CR64
C Caleman (380_CR48) 2012; 8
380_CR63
SS Liow (380_CR3) 2016; 41
380_CR23
A Khodayari (380_CR46) 2018; 12
J Andrews (380_CR45) 2020; 206
F Leroy (380_CR29) 2015; 31
A Cardellini (380_CR4) 2016; 380
P Johansson (380_CR27) 2018; 3
H-C Yang (380_CR8) 2018; 12
380_CR17
S Prodhan (380_CR60) 2020; 11
F Leroy (380_CR30) 2015; 119
380_CR11
P Johansson (380_CR28) 2015; 781
380_CR55
TT Nguyen (380_CR12) 2021; 155
EM Rossi (380_CR18) 2021; 36
380_CR54
A Govind Rajan (380_CR32) 2019; 19
D Nečas (380_CR80) 2012; 10
380_CR59
K Pei (380_CR66) 2017; 4
J Andrews (380_CR68) 2019; 123
ABD Cassie (380_CR26) 1944; 40
380_CR51
M Parent (380_CR42) 2013; 172
JG Kirkwood (380_CR81) 1949; 17
Y Gao (380_CR1) 2015; 3
E Bormashenko (380_CR24) 2011; 360
HK Makadia (380_CR43) 2011; 3
D Ballal (380_CR7) 2013; 139
BS Guiton (380_CR19) 2020; 45
DL Sedin (380_CR84) 2001; 182
MD Hanwell (380_CR69) 2012; 4
Q Chen (380_CR5) 2022; 430
J Delabie (380_CR14) 2020; 53
380_CR44
HJC Berendsen (380_CR76) 1987; 91
J Gerber (380_CR15) 2019; 10
380_CR41
I-C Yeh (380_CR77) 1999; 111
Y Xu (380_CR65) 2016; 84
380_CR47
References_xml – reference: CardelliniAFasanoMChiavazzoEAsinariPPhys. Lett. A201638020173517401:CAS:528:DC%2BC28XktlKhtLo%3D10.1016/j.physleta.2016.03.015
– reference: ChenQZhangXChenKWuXZongTFengCZhangDChem. Eng. J.20224301:CAS:528:DC%2BB3MXitlamsbzJ10.1016/j.cej.2021.133036
– reference: ProdhanSQiuJRicciMRoscioniOMWangLBeljonneDJ. Phys. Chem. Lett.20201116651965251:CAS:528:DC%2BB3cXhsVaqsbrM10.1021/acs.jpclett.0c01793
– reference: GerberJLendenmannTEghlidiHSchutziusTMPoulikakosDNat. Commun.20191011101:CAS:528:DC%2BC1MXitValtLfL10.1038/s41467-019-12093-w
– reference: MasuduzzamanMKimBMicrofluid. Nanofluid.202125611410.1007/s10404-021-02455-6
– reference: BellussiFMRoscioniOMRicciMFasanoMJ. Phys. Chem. B20211254312020120271:CAS:528:DC%2BB3MXitlWmurzO10.1021/acs.jpcb.1c07642
– reference: AndrewsJBlaisten-BarojasEJ. Phys. Chem. B20191234810233102441:CAS:528:DC%2BC1MXitFagtbbP10.1021/acs.jpcb.9b06681
– reference: LeroyFLiuSZhangJJ. Phys. Chem. C20151195128470284811:CAS:528:DC%2BC2MXhvFWrsLnK10.1021/acs.jpcc.5b10267
– reference: AndrewsJHandlerRABlaisten-BarojasEPolymer20202061:CAS:528:DC%2BB3cXhs1Sru7jO10.1016/j.polymer.2020.122903
– reference: SedinDLRowlenKLApplied Surface Science2001182140481:CAS:528:DC%2BD3MXnt1aqurw%3D10.1016/S0169-4332(01)00432-9
– reference: MakadiaHKSiegelSJPolymers201133137713971:CAS:528:DC%2BC3MXhtFOis7jJ10.3390/polym3031377
– reference: WangPZhengGDaiKLiuCShenCChem. Eng. J.20224301:CAS:528:DC%2BB3MXitlamsb3K10.1016/j.cej.2021.133052
– reference: A.I. Jewett, D. Stelter, J. Lambert, S.M. Saladi, O.M. Roscioni, M. Ricci, L. Autin, M. Maritan, S.M. Bashusqeh, T. Keyes, R.T. Dame, J.-E. Shea, G.J. Jensen, D.S. Goodsell, J. Mol. Biol.433(11), 166841 (2021). https://doi.org/10.1016/j.jmb.2021.166841
– reference: PlimptonSJ. Comput. Phys.199511711191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.1039
– reference: Chemical & Physical Properties of Select Polymers (n.d.). https://www.absorbables.com/technical/properties/
– reference: PeiKYingYChuCMater. Today Chem.20174909610.1016/j.mtchem.2017.02.006
– reference: GaoYYaoWSunJZhangHWangZWangLYangDZhangLYangHJ. Mater. Chem. A20153107381:CAS:528:DC%2BC2MXks1ejs78%3D10.1039/C4TA06347C
– reference: WenzelRNInd. Eng. Chem.19362889889941:CAS:528:DyaA28Xkslentg%3D%3D10.1021/ie50320a024
– reference: S.W.I. Siu, K. Pluhackova, R.A. Böckmann, J. Chem. Theory Comput.8(4), 1459 (2012) https://doi.org/10.1021/ct200908r. https://doi.org/10.1021/ct200908r
– reference: ParentMNouvelCKoerberMSapinAMaincentPBoudierAJ. Controlled Release201317212923041:CAS:528:DC%2BC3sXhslOku77K10.1016/j.jconrel.2013.08.024
– reference: OzcelikHGSatirogluEBarisikMNanoscale2020124121376213911:CAS:528:DC%2BB3cXhvFajsbnF10.1039/D0NR05392A
– reference: JohanssonPHessBPhys. Rev. Fluids2018310.1103/PhysRevFluids.3.074201
– reference: CottenyeNAnselmeKPlouxLVebert-NardinCAdv. Funct. Mater.2012222348911:CAS:528:DC%2BC38XhtVKntbvK10.1002/adfm.201200988
– reference: NguyenTTKhuatHTTAsakuraSMizutaniGMurakamiYOkadaTJ. Chem. Phys.202115581:CAS:528:DC%2BB3MXhvV2rs7rE10.1063/5.0057145
– reference: YaghoubiHForoutanMAppl. Surf. Sci.20205001:CAS:528:DC%2BC1MXhvFGmurbJ10.1016/j.apsusc.2019.144002
– reference: LiuHLiYKrauseWERojasOJPasquinelliMAJ. Phys. Chem. B20121165157015781:CAS:528:DC%2BC38XhsVyrs7c%3D10.1021/jp209024r
– reference: KhodayariAFasanoMBigdeliMBMohammadnejadSChiavazzoEAsinariPCase Stud. Therm. Eng.20181245446110.1016/j.csite.2018.06.005
– reference: Avogadro: An open-source molecular builder and visualization tool, version 1.XX (n.d.). http://avogadro.cc/
– reference: VegaCde MiguelEJ. Chem. Phys.2007126151:CAS:528:DC%2BD2sXkvF2rsbo%3D10.1063/1.2715577
– reference: European Committee for Standardization: CEN Workshop Agreement CWA 17284: Materials modelling - Terminology, classification and metadata (2018). https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf
– reference: NečasDKlapetekPCent. Eur. J. Phys.20121018118810.2478/s11534-011-0096-2
– reference: R.J. Good, L.A. Girifalco, J. Phys. Chem.64(5), 561 (1960). https://doi.org/10.1021/j100834a012
– reference: PannuzzoMHortaBACLa RosaCDecuzziPMacromolecules20205310364336541:CAS:528:DC%2BB3cXovF2isrw%3D10.1021/acs.macromol.0c00110
– reference: RossiEMPhaniPSGuillemetRCholetJJusseyDOliverWCSebastianiMJournal of Materials Research20213611235723701:CAS:528:DC%2BB3MXitFSgtb7F10.1557/s43578-021-00127-3
– reference: LeroyFMüller-PlatheFLangmuir20153130833583451:CAS:528:DC%2BC2MXhtFGisL7L10.1021/acs.langmuir.5b01394
– reference: KoishiTYasuokaKFujikawaSZengXCACS Nano201159683468421:CAS:528:DC%2BC3MXhtVKhtLbO10.1021/nn2005393
– reference: MatesJEIbrahimRVeraAGuggenheimSQinJCalewartsDWaldroupDEMegaridisCMGreen Chem.2016187218521921:CAS:528:DC%2BC2MXhvFClu7vN10.1039/C5GC02725J
– reference: CalemanCvan MaarenPJHongMHubJSCostaLTvan der SpoelDJ. Chem. Theory Comput.20128161741:CAS:528:DC%2BC3MXhsF2itrbE10.1021/ct200731v
– reference: YehI-CBerkowitzMLJ. Chem. Phys.19991117315531621:CAS:528:DyaK1MXkslyht7o%3D10.1063/1.479595
– reference: CardelliniAMaria BellussiFRossiEChiavariniLBeckerCCantDAsinariPSebastianiMMater. Des.20212081:CAS:528:DC%2BB3MXhsVWitLfE10.1016/j.matdes.2021.109902
– reference: JungYCBhushanBNanotechnology20061719497049801:CAS:528:DC%2BD28Xht1Klt7fF10.1088/0957-4484/17/19/033
– reference: BormashenkoEJ. Colloid Interface Sci.201136013173191:CAS:528:DC%2BC3MXmvFymsro%3D10.1016/j.jcis.2011.04.051
– reference: Z. Zhang, X. Wang, R. Zhu, Y. Wang, B. Li, Y. Ma, Y. Yin, Polym. Sci. Ser. B58, 720 (2016). https://doi.org/10.1134/S1560090416060191
– reference: WangWLiHLiQLuoZJ. Appl. Polym. Sci.202113842512421:CAS:528:DC%2BB3MXhsFSks7%2FK10.1002/app.51242
– reference: DelabieJDe WinterJDeschaumeOBarticCGerbauxPVerbiestTKoeckelberghsGMacromolecules2020532411098111051:CAS:528:DC%2BB3cXisVejt7%2FL10.1021/acs.macromol.0c01593
– reference: M. Ricci, O.M. Roscioni, L. Querciagrossa, C. Zannoni, Phys. Chem. Chem. Phys.21, 26195 (2019). https://doi.org/10.1039/C9CP04120F
– reference: AbascalJLFVegaCJ. Chem. Phys.2005123231:CAS:528:DC%2BD28XltVOg10.1063/1.2121687
– reference: T. Young III, Philos. Trans. R. Soc. Lond.95, 65 (1805). https://doi.org/10.1098/rstl.1805.0005
– reference: W.F. van Gunsteren, X. Daura, N. Hansen, A.E. Mark, C. Oostenbrink, S. Riniker, L.J. Smith, Angew. Chem. Int. Ed.57(4), 884 (2018). https://doi.org/10.1002/anie.201702945
– reference: ZhangJBorgMKSefianeKReeseJMPhys. Rev. E201592510.1103/PhysRevE.92.052403
– reference: Dortmund Data Bank, Surface Tension of Hexane (n.d.). http://www.ddbst.com/en/EED/PCP/SFT_C89.php
– reference: CassieABDBaxterSTrans. Faraday Soc.1944405465511:CAS:528:DyaH2MXhsFKqsA%3D%3D10.1039/TF9444000546
– reference: XuYKooDGersteinEAKimC-SPolymer2016841211311:CAS:528:DC%2BC28Xlt1akuw%3D%3D10.1016/j.polymer.2015.12.052
– reference: GentilePChionoVCarmagnolaIHattonPVInt. J. Mol. Sci.2014153364036591:CAS:528:DC%2BC2cXhtlWhtbjI10.3390/ijms15033640
– reference: European Committee for Standardization: CEN Workshop Agreement CWA 17815: Materials characterisation - Terminology, metadata and classification (2021). https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/ICT/cwa17815.pdf
– reference: Hong-KaiGHai-PingFChin. Phys. Lett.200522478710.1088/0256-307X/22/4/002
– reference: ZhuCGaoYLiHMengSLiLFranciscoJSZengXCProc. Natl. Acad. Sci. U.S.A.20161134612946129511:CAS:528:DC%2BC28XhslKmtrnP10.1073/pnas.1616138113
– reference: F.M. Bellussi, O.M. Roscioni, A. Cardellini, M. Provenzano, M. Fasano, Zenodo (2022). https://doi.org/10.5281/zenodo.6629427
– reference: LAMMPS Molecular Dynamics Simulator (n.d.). https://www.lammps.org
– reference: BallalDChapmanWGJ. Chem. Phys.2013139111:CAS:528:DC%2BC3sXhsV2jsLfL10.1063/1.4821604
– reference: BonnDEggersJIndekeuJMeunierJRolleyERev. Mod. Phys.2009817398051:CAS:528:DC%2BD1MXnsFCgur8%3D10.1103/RevModPhys.81.739
– reference: KirkwoodJGBuffFPJ. Chem. Phys.19491733383431:CAS:528:DyaH1MXivVOlug%3D%3D10.1063/1.1747248
– reference: HanwellMDCurtisDELonieDCVandermeerschTZurekEHutchisonGRJ. Cheminf.2012411171:CAS:528:DC%2BC3sXhsVGksLg%3D10.1186/1758-2946-4-17
– reference: GuitonBSStefikMAugustynVBanerjeeSBardeenCJBartlettBMLiJLópez-MejíasVMacGillivrayLRMorrisAMRS Bull.2020451195196410.1557/mrs.2020.271
– reference: YangH-CXieYChanHNarayananBChenLWaldmanRZSankaranarayananSKElamJWDarlingSBACS Nano2018128867886851:CAS:528:DC%2BC1cXhsFWhtbrK10.1021/acsnano.8b04632
– reference: FasanoMBevilacquaAChiavazzoEHumplikTAsinariPSci. Rep.2019911121:CAS:528:DC%2BC1MXitlGhsrnI10.1038/s41598-019-54751-5
– reference: ZubillagaRALabastidaACruzBMartínezJCSánchezEAlejandreJJ. Chem. Theory Comput.201393161116151:CAS:528:DC%2BC3sXht1Kksrw%3D10.1021/ct300976t
– reference: R. Mažeikienė, G. Niaura, A. Malinauskas, Spectrochim. Acta AMol. Biomol. Spectrosc. 262, 120140 (2021). https://doi.org/10.1016/j.saa.2021.120140
– reference: V. Sresht, A. Govind Rajan, E. Bordes, M.S. Strano, A.A.H. Pádua, D. Blankschtein, J. Phys. Chem. C121(16), 9022 (2017). https://doi.org/10.1021/acs.jpcc.7b00484
– reference: P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia, “MeshLab: An Open-Source Mesh Processing Tool,” in Proceedings of the Eurographics Italian Chapter Conference (Eurographics Association, 2008), pp. 129. https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
– reference: A. Pérez de la Luz, G.A. Méndez-Maldonado, E. Núñez-Rojas, F. Bresme, J. Alejandre, J. Chem. Theory Comput.11(6), 2792 (2015). https://doi.org/10.1021/acs.jctc.5b00080
– reference: OwensDKWendtRCJ. Appl. Polym. Sci.1969138174117471:CAS:528:DyaF1MXltFegtLc%3D10.1002/app.1969.070130815
– reference: EthaSADesaiPRSacharHSDasSMacromolecules20215425845961:CAS:528:DC%2BB3MXptVyjtA%3D%3D10.1021/acs.macromol.0c02234
– reference: Jmol: An open-source Java viewer for chemical structures in 3D (n.d.). http://www.jmol.org/
– reference: LiowSSKarimAALohXJMRS Bull.20164175575661:CAS:528:DC%2BC28XhtFOjt7fF10.1557/mrs.2016.139
– reference: JohanssonPCarlsonAHessBJ. Fluid Mech.20157816957111:CAS:528:DC%2BC2MXhvValtbnK10.1017/jfm.2015.517
– reference: ChauTTBruckardWJKohPTLNguyenAVAdv. Colloid Interface Sci.200915021061151:CAS:528:DC%2BD1MXpvFaqtL8%3D10.1016/J.CIS.2009.07.003
– reference: BerendsenHJCGrigeraJRStraatsmaTPJ. Phys. Chem.19879124626962711:CAS:528:DyaL2sXmt1els7w%3D10.1021/j100308a038
– reference: ZhangLLuanBZhouRJ. Phys. Chem. B201912334724372521:CAS:528:DC%2BC1MXhsFShtLrF10.1021/acs.jpcb.9b02797
– reference: BuehlerMJMRS Bull.20133821691761:CAS:528:DC%2BC3sXksVGksr0%3D10.1557/mrs.2013.26
– reference: Govind RajanAStranoMSBlankschteinDNano Lett.2019193153915511:CAS:528:DC%2BC1MXitVChtbo%3D10.1021/acs.nanolett.8b04335
– reference: WongT-SSunTFengLAizenbergJMRS Bull.20133853663711:CAS:528:DC%2BC3sXnvV2msLY%3D10.1557/mrs.2013.99
– reference: X.S. Wu, N. Wang, J. Biomater. Sci. Polym. Ed.12(1), 21 (2001). https://doi.org/10.1163/156856201744425
– reference: YaghoubiHForoutanMPhys. Chem. Chem. Phys.20182022308223191:CAS:528:DC%2BC1cXhsVCnsbrJ10.1039/C8CP03762K
– ident: 380_CR74
  doi: 10.1021/ct200908r
– ident: 380_CR47
  doi: 10.1021/acs.jctc.5b00080
– ident: 380_CR54
  doi: 10.1134/S1560090416060191
– volume: 12
  start-page: 8678
  issue: 8
  year: 2018
  ident: 380_CR8
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04632
– volume: 41
  start-page: 557
  issue: 7
  year: 2016
  ident: 380_CR3
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2016.139
– volume: 123
  start-page: 7243
  issue: 34
  year: 2019
  ident: 380_CR31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b02797
– ident: 380_CR23
  doi: 10.1098/rstl.1805.0005
– volume: 18
  start-page: 2185
  issue: 7
  year: 2016
  ident: 380_CR6
  publication-title: Green Chem.
  doi: 10.1039/C5GC02725J
– volume: 380
  start-page: 1735
  issue: 20
  year: 2016
  ident: 380_CR4
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.03.015
– volume: 12
  start-page: 454
  year: 2018
  ident: 380_CR46
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2018.06.005
– volume: 92
  issue: 5
  year: 2015
  ident: 380_CR57
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.052403
– ident: 380_CR55
  doi: 10.1002/anie.201702945
– volume: 182
  start-page: 40
  issue: 1
  year: 2001
  ident: 380_CR84
  publication-title: Applied Surface Science
  doi: 10.1016/S0169-4332(01)00432-9
– volume: 119
  start-page: 28470
  issue: 51
  year: 2015
  ident: 380_CR30
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10267
– volume: 22
  start-page: 787
  issue: 4
  year: 2005
  ident: 380_CR56
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/22/4/002
– volume: 38
  start-page: 169
  issue: 2
  year: 2013
  ident: 380_CR21
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.26
– volume: 25
  start-page: 1
  issue: 6
  year: 2021
  ident: 380_CR58
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-021-02455-6
– volume: 45
  start-page: 951
  issue: 11
  year: 2020
  ident: 380_CR19
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2020.271
– volume: 138
  start-page: 51242
  issue: 42
  year: 2021
  ident: 380_CR13
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.51242
– volume: 53
  start-page: 11098
  issue: 24
  year: 2020
  ident: 380_CR14
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c01593
– ident: 380_CR37
  doi: 10.1021/acs.jpcc.7b00484
– volume: 36
  start-page: 2357
  issue: 11
  year: 2021
  ident: 380_CR18
  publication-title: Journal of Materials Research
  doi: 10.1557/s43578-021-00127-3
– volume: 3
  start-page: 10738
  year: 2015
  ident: 380_CR1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06347C
– volume: 155
  issue: 8
  year: 2021
  ident: 380_CR12
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0057145
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 380_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54751-5
– volume: 9
  start-page: 1611
  issue: 3
  year: 2013
  ident: 380_CR49
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300976t
– volume: 53
  start-page: 3643
  issue: 10
  year: 2020
  ident: 380_CR67
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c00110
– volume: 5
  start-page: 6834
  issue: 9
  year: 2011
  ident: 380_CR36
  publication-title: ACS Nano
  doi: 10.1021/nn2005393
– volume: 20
  start-page: 22308
  year: 2018
  ident: 380_CR34
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP03762K
– volume: 500
  year: 2020
  ident: 380_CR35
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144002
– volume: 4
  start-page: 90
  year: 2017
  ident: 380_CR66
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2017.02.006
– volume: 116
  start-page: 1570
  issue: 5
  year: 2012
  ident: 380_CR38
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp209024r
– volume: 8
  start-page: 61
  issue: 1
  year: 2012
  ident: 380_CR48
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200731v
– volume: 12
  start-page: 21376
  issue: 41
  year: 2020
  ident: 380_CR62
  publication-title: Nanoscale
  doi: 10.1039/D0NR05392A
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 380_CR72
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– ident: 380_CR79
– volume: 22
  start-page: 4891
  issue: 23
  year: 2012
  ident: 380_CR2
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200988
– volume: 17
  start-page: 338
  issue: 3
  year: 1949
  ident: 380_CR81
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1747248
– ident: 380_CR44
– volume: 3
  year: 2018
  ident: 380_CR27
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.3.074201
– volume: 40
  start-page: 546
  year: 1944
  ident: 380_CR26
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/TF9444000546
– volume: 17
  start-page: 4970
  issue: 19
  year: 2006
  ident: 380_CR52
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/19/033
– volume: 113
  start-page: 12946
  issue: 46
  year: 2016
  ident: 380_CR39
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1616138113
– volume: 206
  year: 2020
  ident: 380_CR45
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122903
– ident: 380_CR64
– volume: 126
  issue: 15
  year: 2007
  ident: 380_CR50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2715577
– volume: 81
  start-page: 739
  year: 2009
  ident: 380_CR22
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.739
– volume: 19
  start-page: 1539
  issue: 3
  year: 2019
  ident: 380_CR32
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04335
– ident: 380_CR70
– ident: 380_CR17
  doi: 10.1021/j100834a012
– volume: 430
  year: 2022
  ident: 380_CR10
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133052
– volume: 38
  start-page: 366
  issue: 5
  year: 2013
  ident: 380_CR20
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.99
– ident: 380_CR11
  doi: 10.1016/j.saa.2021.120140
– ident: 380_CR51
– volume: 15
  start-page: 3640
  issue: 3
  year: 2014
  ident: 380_CR83
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15033640
– ident: 380_CR71
  doi: 10.1016/j.jmb.2021.166841
– volume: 28
  start-page: 988
  issue: 8
  year: 1936
  ident: 380_CR25
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50320a024
– volume: 4
  start-page: 1
  issue: 1
  year: 2012
  ident: 380_CR69
  publication-title: J. Cheminf.
  doi: 10.1186/1758-2946-4-17
– volume: 91
  start-page: 6269
  issue: 24
  year: 1987
  ident: 380_CR76
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– ident: 380_CR78
– ident: 380_CR41
  doi: 10.1163/156856201744425
– volume: 123
  issue: 23
  year: 2005
  ident: 380_CR75
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2121687
– volume: 430
  year: 2022
  ident: 380_CR5
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133036
– volume: 10
  start-page: 181
  year: 2012
  ident: 380_CR80
  publication-title: Cent. Eur. J. Phys.
  doi: 10.2478/s11534-011-0096-2
– volume: 31
  start-page: 8335
  issue: 30
  year: 2015
  ident: 380_CR29
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01394
– volume: 172
  start-page: 292
  issue: 1
  year: 2013
  ident: 380_CR42
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2013.08.024
– ident: 380_CR63
– volume: 111
  start-page: 3155
  issue: 7
  year: 1999
  ident: 380_CR77
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479595
– volume: 3
  start-page: 1377
  issue: 3
  year: 2011
  ident: 380_CR43
  publication-title: Polymers
  doi: 10.3390/polym3031377
– volume: 208
  year: 2021
  ident: 380_CR33
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109902
– volume: 150
  start-page: 106
  issue: 2
  year: 2009
  ident: 380_CR53
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/J.CIS.2009.07.003
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 380_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12093-w
– ident: 380_CR82
  doi: 10.5281/zenodo.6629427
– volume: 84
  start-page: 121
  year: 2016
  ident: 380_CR65
  publication-title: Polymer
  doi: 10.1016/j.polymer.2015.12.052
– volume: 125
  start-page: 12020
  issue: 43
  year: 2021
  ident: 380_CR61
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.1c07642
– volume: 11
  start-page: 6519
  issue: 16
  year: 2020
  ident: 380_CR60
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01793
– ident: 380_CR73
– volume: 360
  start-page: 317
  issue: 1
  year: 2011
  ident: 380_CR24
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.04.051
– volume: 123
  start-page: 10233
  issue: 48
  year: 2019
  ident: 380_CR68
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b06681
– volume: 781
  start-page: 695
  year: 2015
  ident: 380_CR28
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.517
– volume: 54
  start-page: 584
  issue: 2
  year: 2021
  ident: 380_CR40
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.0c02234
– volume: 139
  issue: 11
  year: 2013
  ident: 380_CR7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4821604
– ident: 380_CR59
  doi: 10.1039/C9CP04120F
– volume: 13
  start-page: 1741
  issue: 8
  year: 1969
  ident: 380_CR16
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1969.070130815
SSID ssj0015075
Score 2.4395707
Snippet A challenging topic in surface engineering is predicting the wetting properties of soft interfaces with different liquids. However, a robust computational...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 108
SubjectTerms Applied and Technical Physics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Energy Materials
Impact Article
Materials Engineering
Materials Science
Nanotechnology
Title Wettability of soft PLGA surfaces predicted by experimentally augmented atomistic models
URI https://link.springer.com/article/10.1557/s43577-022-00380-9
Volume 48
WOSCitedRecordID wos000852931100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1938-1425
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015075
  issn: 0883-7694
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA06FfTBy1ScN_Lgmwa6Jm2axyFOH2QMr3srzU2EuY2mE_bvTdJ2bCADff9awkm-fAnfyTkAXGGtAy4oQZkmEhGRCJSwtkZaZczWC0ZUKL3ZBO31ksGA9atHYaZmu9ctSb9Te48ee203trBTihz73LWzAsTWwYYtd4kzbHh6fpv3DqJSXtemD0Y0ZqR6KvP7P5bL0XIv1JeY7t7_BrcPdqsjJeyUa-AArKlRE-wsCA02wZYnegpzCAbvqihKbe4ZHGto7DYM-4_3HWimuXb8LDjJXfPGnkQhn8FFB4DhDGbTD6_iKaG9rH95kWfozXTMEXjt3r3cPqDKXQEJjKMCiSTGnEmmiWN6JplggYjCTNuE1BHmIowzSbAOqWRJZGeSB4KFnFAlLcSUSnwMGqPxSJ0AyAlTWCohCdUEc86ojlUgbDSWWGDSAu0a5FRU0uPOAWOYuiuIxS8t8UstfqnHL2UtcD3_ZlIKb6yMvqnnJa2S0KwIP_1b-BnYdi7zJVn7HDSKfKouwKb4Lj5NfulX3w_Ae9TY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oVNQHL1NxXvPgmwa6Jl2aRxHnxDnE695KcxNhTmk7Yf_eJO1EQQb6flrCl5ychPPl-wCOiDGBkIzi1FCFqYwljnnTYKNTbusFpzpU3myC9Xpxv89vqkdh-YTtPmlJ-p3ae_TYa3tuCztj2LHPXTsrwHwW5qitWE4x__bu8at3EJXyujZ9CGYtTqunMr__42c5-tkL9SWmvfq_wa3BSnWkRKflGliHGT2sw_I3ocE6LHiip8w3oP-ki6LU5h6jN4Nyuw2jm-7FKcpHmXH8LPSeueaNPYkiMUbfHQAGY5SOnr2Kp0L2sv7qRZ6RN9PJN-GhfX5_1sGVuwKWhEQFlnGLCK64oY7pGaeSBzIKU2MT0kREyLCVKkpMyBSPIzuTIpA8FJRpZSFmTJEtqA3fhnobkKBcE6WlosxQIgRnpqUDaaOJIpLQBjQnICeykh53DhiDxF1BLH5JiV9i8Us8fglvwPHXN--l8MbU6JPJvCRVEuZTwnf-Fn4Ii537627Svexd7cKSc5wvidt7UCuykd6HeflRvOTZgV-Jn8Q617w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7ovKAPXqbivObBNw12Tbo0j6JORRkDb3srzU0EnWPthP17k7QbG8hAfD8t5UtOTw7ny_cBnBBjAiEZxamhClMZSxzzusFGp9zWC051qLzZBGu14k6Htydu8Xu2-2gkWdxpcCpN3fy8p0zh12Nb-MwWecawY6K70VaA-TwsUEekd_3648t4jhAVUrs2lQhmDU7LazO_v2O6NE3PRX25aa7__0M3YK08aqKLYm9swpzuVmF1QoCwCkueACqzLei86jwvNLuH6MugzP6eUfvh5gJlg75xvC3U67uhjj2hIjFEk84AH0OUDt68uqdCton_9OLPyJvsZNvw3Lx-urzFpesCloREOZZxgwiuuKGOARqnkgcyClNjE9VERMiwkSpKTMgUjyO7wiKQPBSUaWXhZkyRHah0v7p6F5CgXBOlpaLMUCIEZ6ahA2mjiSKS0BrUR4AnspQkd84YH4lrTSx-SYFfYvFLPH4Jr8Hp-JleIcgxM_pstEZJmZzZjPC9v4Ufw3L7qpk83LXu92HFGdEXfO4DqOT9gT6ERfmdv2f9I78pfwBDFOCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wettability+of+soft+PLGA+surfaces+predicted+by+experimentally+augmented+atomistic+models&rft.jtitle=MRS+bulletin&rft.au=Bellussi%2C+Francesco+Maria&rft.au=Roscioni%2C+Otello+Maria&rft.au=Rossi%2C+Edoardo&rft.au=Cardellini%2C+Annalisa&rft.date=2023-02-01&rft.pub=Springer+International+Publishing&rft.issn=0883-7694&rft.eissn=1938-1425&rft.volume=48&rft.issue=2&rft.spage=108&rft.epage=117&rft_id=info:doi/10.1557%2Fs43577-022-00380-9&rft.externalDocID=10_1557_s43577_022_00380_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7694&client=summon