Successive Logarithmic Coefficients of Univalent Functions

The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of | γ 2 ( f ) | - | γ 1 ( f ) | were obtained in the class S , where γ n ( f ) denotes the n -th logarithmic coefficient of f ∈ S . The result is applicable to some standard subclasses of S ....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational methods and function theory Ročník 24; číslo 4; s. 693 - 705
Hlavní autoři: Lecko, Adam, Partyka, Dariusz
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Témata:
ISSN:1617-9447, 2195-3724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of | γ 2 ( f ) | - | γ 1 ( f ) | were obtained in the class S , where γ n ( f ) denotes the n -th logarithmic coefficient of f ∈ S . The result is applicable to some standard subclasses of S . Relevant examples were indicated.
AbstractList The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of $$|\gamma _2(f)|-|\gamma _1(f)|$$ | γ 2 ( f ) | - | γ 1 ( f ) | were obtained in the class $${\mathcal {S}}$$ S , where $$\gamma _n(f)$$ γ n ( f ) denotes the n -th logarithmic coefficient of $$f\in {\mathcal {S}}$$ f ∈ S . The result is applicable to some standard subclasses of $${\mathcal {S}}$$ S . Relevant examples were indicated.
The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of | γ 2 ( f ) | - | γ 1 ( f ) | were obtained in the class S , where γ n ( f ) denotes the n -th logarithmic coefficient of f ∈ S . The result is applicable to some standard subclasses of S . Relevant examples were indicated.
Author Partyka, Dariusz
Lecko, Adam
Author_xml – sequence: 1
  givenname: Adam
  surname: Lecko
  fullname: Lecko, Adam
  email: alecko@matman.uwm.edu.pl
  organization: Department of Complex Analysis, Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn
– sequence: 2
  givenname: Dariusz
  surname: Partyka
  fullname: Partyka, Dariusz
  organization: Department of Mathematical Analysis, The John Paul II Catholic University of Lublin, Institute of Mathematics and Information Technology, The University College of Applied Sciences in Chełm
BookMark eNp9j81KQzEQRoNUsFZfwNV9gejk5zaJOylWhYIL7TrMjUlNaRNJbgu-vbfWlYuuhoE5833nkoxSTp6QGwa3DEDdVQmCtRS4oAAtADVnZMyZaalQXI7ImE2ZokZKdUEua10PR9IIMSb3bzvnfK1x75tFXmGJ_ec2umaWfQjRRZ_62uTQLFPc42bYmvkuuT7mVK_IecBN9dd_c0KW88f32TNdvD69zB4W1AnR9hSNQkQWWOcNduiU6FCjk_oDgvEdZ05pM1WGg-LadUxqCLxtPWrjOXdeTAg__nUl11p8sF8lbrF8Wwb2YG-P9nawt7_21gyQ_ge52OOhd18wbk6j4ojWISetfLHrvCtpUDxF_QBwFHGx
CitedBy_id crossref_primary_10_3390_axioms14080553
crossref_primary_10_1007_s13324_025_01103_4
crossref_primary_10_1007_s40840_025_01963_w
Cites_doi 10.1112/jlms/s1-38.1.228
10.2307/2370963
10.1090/proc/13817
10.1090/proc/12921
10.1307/mmj/1028988895
10.1007/BF02392821
10.2307/2007212
10.1007/s00605-017-1092-4
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
DOI 10.1007/s40315-023-00500-9
DatabaseName Springer Nature Link
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2195-3724
EndPage 705
ExternalDocumentID 10_1007_s40315_023_00500_9
GroupedDBID 06D
0R~
199
203
2LR
30V
4.4
406
95.
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AM4
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARMRJ
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
BAPOH
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
KOV
L7B
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
ROL
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
VH1
W48
ZMTXR
AAYXX
CITATION
ID FETCH-LOGICAL-c335t-a97aaa1f1be9abac73ba8ac48d0f9eb21c78967920728cb1480f255ea89e22ce3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001081084500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1617-9447
IngestDate Sat Nov 29 03:09:55 EST 2025
Tue Nov 18 21:55:07 EST 2025
Mon Jul 21 06:07:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 30C75
30C45
30C50
Logarithmic coefficients
Univalent functions
Successive coefficients
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-a97aaa1f1be9abac73ba8ac48d0f9eb21c78967920728cb1480f255ea89e22ce3
OpenAccessLink https://link.springer.com/10.1007/s40315-023-00500-9
PageCount 13
ParticipantIDs crossref_primary_10_1007_s40315_023_00500_9
crossref_citationtrail_10_1007_s40315_023_00500_9
springer_journals_10_1007_s40315_023_00500_9
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Computational methods and function theory
PublicationTitleAbbrev Comput. Methods Funct. Theory
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Hayman (CR14) 1963; 38
Alexander (CR1) 1915; 17
Kaplan (CR15) 1952; 1
Ozaki (CR22) 1935; 2
Kumar, Vasudevarao (CR17) 2018; 187
Duren (CR8) 1983
CR18
CR12
Biernacki (CR4) 1936; 44
Lewandowski (CR20) 1960; 14
Goluzin (CR10) 1946; 19
Goodman (CR11) 1983
Koepf (CR16) 1992; 262
Robertson (CR24) 1936; 58
CR3
Hallenbeck, MacGregor (CR13) 1984
Biernacki (CR5) 1956; 4
CR27
Cho, Kowalczyk, Kwon, Lecko, Sim (CR6) 2020; 114
CR25
Girela (CR9) 2000; 25
Lewandowski (CR19) 1958; 12
CR21
Thomas (CR26) 2016; 144
De Branges (CR7) 1985; 154
Ali, Vasudevarao (CR2) 2018; 146
Pommerenke (CR23) 1975
L De Branges (500_CR7) 1985; 154
DK Thomas (500_CR26) 2016; 144
JW Alexander (500_CR1) 1915; 17
DJ Hallenbeck (500_CR13) 1984
Z Lewandowski (500_CR20) 1960; 14
UP Kumar (500_CR17) 2018; 187
D Girela (500_CR9) 2000; 25
500_CR12
M Biernacki (500_CR4) 1936; 44
P Duren (500_CR8) 1983
W Kaplan (500_CR15) 1952; 1
AW Goodman (500_CR11) 1983
GM Goluzin (500_CR10) 1946; 19
MF Ali (500_CR2) 2018; 146
NE Cho (500_CR6) 2020; 114
W Koepf (500_CR16) 1992; 262
MS Robertson (500_CR24) 1936; 58
WK Hayman (500_CR14) 1963; 38
C Pommerenke (500_CR23) 1975
500_CR18
S Ozaki (500_CR22) 1935; 2
500_CR25
500_CR27
500_CR21
M Biernacki (500_CR5) 1956; 4
Z Lewandowski (500_CR19) 1958; 12
500_CR3
References_xml – ident: CR18
– volume: 38
  start-page: 228
  year: 1963
  end-page: 243
  ident: CR14
  article-title: On successive coefficients of univalent functions
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-38.1.228
– volume: 19
  start-page: 183
  issue: 61
  year: 1946
  end-page: 202
  ident: CR10
  article-title: On distortion theorems and coefficients of univalent functions
  publication-title: Mat. Sb.
– volume: 58
  start-page: 465
  year: 1936
  end-page: 472
  ident: CR24
  article-title: Analytic functions starlike in one direction
  publication-title: Am. J. Math.
  doi: 10.2307/2370963
– ident: CR12
– year: 1984
  ident: CR13
  publication-title: Linear Problems and Convevity Techniques in Geometric Function Theory
– volume: 44
  start-page: 293
  year: 1936
  end-page: 314
  ident: CR4
  article-title: Sur la représentation conforme des domaines linéairement accessibles
  publication-title: Prace Mat. Fiz.
– year: 1983
  ident: CR11
  publication-title: Univalent Functions
– volume: 146
  start-page: 1131
  year: 2018
  end-page: 1142
  ident: CR2
  article-title: On logarithmic coefficients of some close-to-convex functions
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/13817
– volume: 2
  start-page: 167
  year: 1935
  end-page: 188
  ident: CR22
  article-title: On the theory of multivalent functions
  publication-title: Sci. Rep. Tokyo Bunrika Daig. A
– volume: 144
  start-page: 1681
  year: 2016
  end-page: 1687
  ident: CR26
  article-title: On logarithmic coefficients of close to convex functions
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/12921
– volume: 1
  start-page: 169
  year: 1952
  end-page: 185
  ident: CR15
  article-title: Close to convex schlicht functions
  publication-title: Mich. Math. J.
  doi: 10.1307/mmj/1028988895
– volume: 114
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR6
  article-title: On the third logarithmic coefficient in some subclasses of close-to-convex functions
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.)
– volume: 154
  start-page: 137
  issue: 1–2
  year: 1985
  end-page: 152
  ident: CR7
  article-title: A proof of the Bieberbach conjecture
  publication-title: Acta Math.
  doi: 10.1007/BF02392821
– ident: CR25
– ident: CR27
– ident: CR21
– volume: 25
  start-page: 337
  year: 2000
  end-page: 350
  ident: CR9
  article-title: Logarithmic coefficients of univalent functions
  publication-title: Ann. Acad. Sci. Fenn.
– volume: 12
  start-page: 131
  year: 1958
  end-page: 146
  ident: CR19
  article-title: Sur l’identité de certaines classes de fonctions univalentes. I
  publication-title: Ann. Univ. Mariae Curie Skłodowska
– ident: CR3
– volume: 14
  start-page: 19
  year: 1960
  end-page: 46
  ident: CR20
  article-title: Sur l’identité de certaines classes de fonctions univalentes. II
  publication-title: Ann. Univ. Mariae Curie Skłodowska
– volume: 4
  start-page: 5
  year: 1956
  end-page: 8
  ident: CR5
  article-title: Sur les cefficients tayloriens des fonctions univalentes
  publication-title: Bull. Acad. Pol. Sci.
– year: 1975
  ident: CR23
  publication-title: Univalent Functions
– volume: 262
  start-page: 93
  year: 1992
  end-page: 105
  ident: CR16
  article-title: Parallel accessible domains and domains that are convex in one direction. Partial differential equations with complex analysis
  publication-title: Pitman Res. Notes Math. Ser.
– volume: 17
  start-page: 12
  issue: 1
  year: 1915
  end-page: 22
  ident: CR1
  article-title: Functions which map the interior of the unit circle upon simple regions
  publication-title: Ann. Math.
  doi: 10.2307/2007212
– year: 1983
  ident: CR8
  publication-title: Univalent Functions
– volume: 187
  start-page: 543
  issue: 3
  year: 2018
  end-page: 563
  ident: CR17
  article-title: Logarithmic coefficients for certain subclasses of close-to-convex functions
  publication-title: Monats. Math.
  doi: 10.1007/s00605-017-1092-4
– ident: 500_CR18
– volume: 17
  start-page: 12
  issue: 1
  year: 1915
  ident: 500_CR1
  publication-title: Ann. Math.
  doi: 10.2307/2007212
– volume: 4
  start-page: 5
  year: 1956
  ident: 500_CR5
  publication-title: Bull. Acad. Pol. Sci.
– volume-title: Univalent Functions
  year: 1983
  ident: 500_CR8
– volume: 154
  start-page: 137
  issue: 1–2
  year: 1985
  ident: 500_CR7
  publication-title: Acta Math.
  doi: 10.1007/BF02392821
– volume: 58
  start-page: 465
  year: 1936
  ident: 500_CR24
  publication-title: Am. J. Math.
  doi: 10.2307/2370963
– volume: 144
  start-page: 1681
  year: 2016
  ident: 500_CR26
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/12921
– ident: 500_CR12
– volume: 44
  start-page: 293
  year: 1936
  ident: 500_CR4
  publication-title: Prace Mat. Fiz.
– volume: 262
  start-page: 93
  year: 1992
  ident: 500_CR16
  publication-title: Pitman Res. Notes Math. Ser.
– volume: 38
  start-page: 228
  year: 1963
  ident: 500_CR14
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-38.1.228
– volume-title: Univalent Functions
  year: 1975
  ident: 500_CR23
– ident: 500_CR3
– volume-title: Linear Problems and Convevity Techniques in Geometric Function Theory
  year: 1984
  ident: 500_CR13
– volume: 114
  start-page: 1
  year: 2020
  ident: 500_CR6
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.)
– volume: 14
  start-page: 19
  year: 1960
  ident: 500_CR20
  publication-title: Ann. Univ. Mariae Curie Skłodowska
– ident: 500_CR25
– volume: 25
  start-page: 337
  year: 2000
  ident: 500_CR9
  publication-title: Ann. Acad. Sci. Fenn.
– ident: 500_CR21
– volume: 146
  start-page: 1131
  year: 2018
  ident: 500_CR2
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/13817
– volume: 19
  start-page: 183
  issue: 61
  year: 1946
  ident: 500_CR10
  publication-title: Mat. Sb.
– volume: 12
  start-page: 131
  year: 1958
  ident: 500_CR19
  publication-title: Ann. Univ. Mariae Curie Skłodowska
– volume: 2
  start-page: 167
  year: 1935
  ident: 500_CR22
  publication-title: Sci. Rep. Tokyo Bunrika Daig. A
– volume-title: Univalent Functions
  year: 1983
  ident: 500_CR11
– volume: 187
  start-page: 543
  issue: 3
  year: 2018
  ident: 500_CR17
  publication-title: Monats. Math.
  doi: 10.1007/s00605-017-1092-4
– ident: 500_CR27
– volume: 1
  start-page: 169
  year: 1952
  ident: 500_CR15
  publication-title: Mich. Math. J.
  doi: 10.1307/mmj/1028988895
SSID ssj0054933
Score 2.3624947
Snippet The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of | γ 2 ( f ) | - | γ 1 ( f ) | were obtained in...
The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of $$|\gamma _2(f)|-|\gamma _1(f)|$$ | γ 2 ( f ) |...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 693
SubjectTerms Analysis
Computational Mathematics and Numerical Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Title Successive Logarithmic Coefficients of Univalent Functions
URI https://link.springer.com/article/10.1007/s40315-023-00500-9
Volume 24
WOSCitedRecordID wos001081084500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2195-3724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054933
  issn: 1617-9447
  databaseCode: RSV
  dateStart: 20010901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-L6ogdvGugjbRJvsrh40EVclb2VNEl1Qbey7fr7nWTbwoIs6H0ayjCZb4bMfB_ABWWJpL4WJMFgIpSbgHBODdFZkmit4ywJpRObYIMBH43EY70UVjbT7s2TpMvU7bIbtYIEBDGGWNISn4hVWEO44_Y6Pg1fm_yLDY8TkLeFOxGUsnpV5vczFuFo8S3UQUx_-38_twNbdUnp3cxjYBdWzGQPNh9aPtZyH66HMyeMiKnNuy_esD-u3j_HyusVxlFI2GkKr8g9O6YhLQ55fcQ7F5IH8NK_fe7dkVo1gagoiisiBZNSBnmQGSEzqViUSS4V5drPBfbRgWJcJEyEPgu5yrAd8nPsK4zkwoShMtEhdCbFxByBJ-IcGx6lMh1TamKOJ8dGC8MZHhiKoAtB47xU1ZTiVtniI23JkJ1fUvRL6vySii5ctt98zQk1llpfNf5O68tVLjE__pv5CWyEWKPMp1NOoVNNZ-YM1tV3NS6n5y6qfgA-NsVX
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-L87INvGuhH2iS-yXBM3Ia4KXsraZLqQFdZO_9-k6wtDGSg79cQjuv97kfu7gdwhUnEsSsZinQwIUyVhyjFCskkiqSUYRL53IpNkH6fjkbsqRwKy6tu9-pJ0mbqetgNG0ECpDEGmaUlLmKrsIY1YplGvufBa5V_NeGxAvKmcEcMY1KOyvx-xiIcLb6FWohp7_zvcruwXZaUzt08BvZgRU32YatX72PND-B2MLPCiDq1Od3sTfPj4v1zLJxWpuwKCdNN4WSpY9o0uMEhp63xzobkIby074etDipVE5AIgrBAnBHOuZd6iWI84YIECadcYCrdlGke7QlCWUSY7xKfikTTITfVvEJxypTvCxUcQWOSTdQxOCxMNeERIpEhxiqk-uRQSaYo0Qf6zGuCVzkvFuVKcaNs8RHXy5CtX2Ltl9j6JWZNuK6_-Zov1FhqfVP5Oy5_rnyJ-cnfzC9hozPsdePuQ__xFDZ9Xa_MO1XOoFFMZ-oc1sV3Mc6nFzbCfgCIssg7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-L87INvGtaPtEl8k2lRnGMwlb2VNEl1oNvYOv9-k7QdDmQgvl-PcFxz9yN3vx_ABSYRx65kKNLJhDBVHqIUKyTTKJJShmnkcys2Qdpt2uuxzo8tfjvtXj1JFjsNhqVpkDdGMmvMFt-wESdAut4gQ2DiIrYMK9iIBhm83n2t7mINfqyYvGniEcOYlGszv_uYL03z76K23MRb_z_oNmyWraZzU-TGDiypwS5sPM14Wid7cN2dWsFEfeU5reGbxs35-2dfOM2hstQSZsrCGWaOGd_gpj45sa6DNlX34SW-e27eo1JNAYkgCHPEGeGce5mXKsZTLkiQcsoFptLNmMbXniCURYT5LvGpSDVMcjONNxSnTPm-UMEB1AbDgToEh4WZBkJCpDLEWIVUew6VZIoS7dBnXh28KpCJKKnGjeLFRzIjSbZxSXRcEhuXhNXhcvbNqCDaWGh9VcU-KX-6yQLzo7-Zn8Na5zZOWg_tx2NY93UbUwywnEAtH0_VKayKr7w_GZ_ZZPsGj-XRHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Successive+Logarithmic+Coefficients+of+Univalent+Functions&rft.jtitle=Computational+methods+and+function+theory&rft.au=Lecko%2C+Adam&rft.au=Partyka%2C+Dariusz&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1617-9447&rft.eissn=2195-3724&rft.volume=24&rft.issue=4&rft.spage=693&rft.epage=705&rft_id=info:doi/10.1007%2Fs40315-023-00500-9&rft.externalDocID=10_1007_s40315_023_00500_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-9447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-9447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-9447&client=summon