Sum-of-squares chordal decomposition of polynomial matrix inequalities
We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P ( x ) with chordal sparsity is p...
Saved in:
| Published in: | Mathematical programming Vol. 197; no. 1; pp. 71 - 108 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2023
|
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix
P
(
x
) with chordal sparsity is positive semidefinite for all
x
∈
R
n
if and only if there exists a sum-of-squares (SOS) polynomial
σ
(
x
)
such that
σ
P
is a sum of sparse SOS matrices. Second, we show that setting
σ
(
x
)
=
(
x
1
2
+
⋯
+
x
n
2
)
ν
for some integer
ν
suffices if
P
is homogeneous and positive definite globally. Third, we prove that if
P
is positive definite on a compact semialgebraic set
K
=
{
x
:
g
1
(
x
)
≥
0
,
…
,
g
m
(
x
)
≥
0
}
satisfying the Archimedean condition, then
P
(
x
)
=
S
0
(
x
)
+
g
1
(
x
)
S
1
(
x
)
+
⋯
+
g
m
(
x
)
S
m
(
x
)
for matrices
S
i
(
x
)
that are sums of sparse SOS matrices. Finally, if
K
is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for
(
x
1
2
+
⋯
+
x
n
2
)
ν
P
(
x
)
with some integer
ν
≥
0
when
P
and
g
1
,
…
,
g
m
are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones. |
|---|---|
| AbstractList | We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix
P
(
x
) with chordal sparsity is positive semidefinite for all
$$x\in \mathbb {R}^n$$
x
∈
R
n
if and only if there exists a sum-of-squares (SOS) polynomial
$$\sigma (x)$$
σ
(
x
)
such that
$$\sigma P$$
σ
P
is a sum of sparse SOS matrices. Second, we show that setting
$$\sigma (x)=(x_1^2 + \cdots + x_n^2)^\nu $$
σ
(
x
)
=
(
x
1
2
+
⋯
+
x
n
2
)
ν
for some integer
$$\nu $$
ν
suffices if
P
is homogeneous and positive definite globally. Third, we prove that if
P
is positive definite on a compact semialgebraic set
$$\mathcal {K}=\{x:g_1(x)\ge 0,\ldots ,g_m(x)\ge 0\}$$
K
=
{
x
:
g
1
(
x
)
≥
0
,
…
,
g
m
(
x
)
≥
0
}
satisfying the Archimedean condition, then
$$P(x) = S_0(x) + g_1(x)S_1(x) + \cdots + g_m(x)S_m(x)$$
P
(
x
)
=
S
0
(
x
)
+
g
1
(
x
)
S
1
(
x
)
+
⋯
+
g
m
(
x
)
S
m
(
x
)
for matrices
$$S_i(x)$$
S
i
(
x
)
that are sums of sparse SOS matrices. Finally, if
$$\mathcal {K}$$
K
is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for
$$(x_1^2 + \cdots + x_n^2)^\nu P(x)$$
(
x
1
2
+
⋯
+
x
n
2
)
ν
P
(
x
)
with some integer
$$\nu \ge 0$$
ν
≥
0
when
P
and
$$g_1,\ldots ,g_m$$
g
1
,
…
,
g
m
are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones. We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P ( x ) with chordal sparsity is positive semidefinite for all x ∈ R n if and only if there exists a sum-of-squares (SOS) polynomial σ ( x ) such that σ P is a sum of sparse SOS matrices. Second, we show that setting σ ( x ) = ( x 1 2 + ⋯ + x n 2 ) ν for some integer ν suffices if P is homogeneous and positive definite globally. Third, we prove that if P is positive definite on a compact semialgebraic set K = { x : g 1 ( x ) ≥ 0 , … , g m ( x ) ≥ 0 } satisfying the Archimedean condition, then P ( x ) = S 0 ( x ) + g 1 ( x ) S 1 ( x ) + ⋯ + g m ( x ) S m ( x ) for matrices S i ( x ) that are sums of sparse SOS matrices. Finally, if K is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for ( x 1 2 + ⋯ + x n 2 ) ν P ( x ) with some integer ν ≥ 0 when P and g 1 , … , g m are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones. |
| Author | Zheng, Yang Fantuzzi, Giovanni |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0003-1545-231X surname: Zheng fullname: Zheng, Yang email: zhengy@eng.ucsd.edu organization: Department of Electrical and Computer Engineering, University of California – sequence: 2 givenname: Giovanni orcidid: 0000-0002-0808-0944 surname: Fantuzzi fullname: Fantuzzi, Giovanni organization: Department of Aeronautics, Imperial College London |
| BookMark | eNp9kMFOAyEQhonRxLb6Ap72BdABdmF7NI1VkyYe1DMBFpRmFypsU_v2UuvJQ09zmP_7M_NN0XmIwSJ0Q-CWAIi7TICAwEAJBiJoi3dnaEJqxnHNa36OJgC0wQ0ncImmOa8BgLC2naDl63bA0eH8tVXJ5sp8xtSpvuqsicMmZj_6GKroqk3s9yEOvuwGNSb_XflgC9SXhM1X6MKpPtvrvzlD78uHt8UTXr08Pi_uV9gw1oxYEdEIZxlhTDeUqM4J3RjbCGqpMnMNimoBc0c7Zw3XXcucs8pwLkDPa6fZDLXHXpNizsk6afyoDjeOSfleEpAHH_LoQxYf8teH3BWU_kM3yQ8q7U9D7AjlEg4fNsl13KZQXjxF_QBop3g6 |
| CitedBy_id | crossref_primary_10_1287_moor_2023_0361 crossref_primary_10_1007_s10898_020_00973_1 crossref_primary_10_1109_TAC_2025_3545766 crossref_primary_10_1007_s10107_023_01993_x crossref_primary_10_1137_24M1675461 crossref_primary_10_1137_23M1626529 |
| Cites_doi | 10.1137/19M1307871 10.1007/BF02952513 10.3166/ejc.12.3-29 10.1109/TAC.2017.2726578 10.1007/s00013-007-2234-z 10.1007/s10107-002-0351-9 10.1016/0024-3795(88)90240-6 10.1137/S1052623400366218 10.1137/1038003 10.1007/s10107-005-0684-2 10.1109/TPWRS.2013.2258044 10.1016/j.laa.2010.04.012 10.1137/05064504X 10.1137/050623802 10.1109/TAC.2014.2305934 10.1137/20M1323564 10.1016/j.jpaa.2003.12.011 10.1007/BF02592948 10.1109/TAC.2009.2017144 10.1109/TPWRS.2013.2294479 10.1016/0022-247X(70)90282-9 10.1017/CBO9780511804441 10.1512/iumj.1993.42.42045 10.1137/15M1034386 10.1016/S0764-4442(99)80251-1 10.1109/TAC.2010.2046926 10.1017/CBO9781107447226 10.1561/2400000006 10.1137/060668791 10.1287/moor.1120.0558 10.1007/s10107-019-01366-3 10.1215/S0012-7094-78-04519-2 10.1109/TAC.2011.2178717 10.1137/1.9781611970791 10.1137/130926924 10.1109/CDC.2007.4435026 10.1007/978-0-387-09686-5_9 10.4171/022-1/17 10.1109/CDC.2014.7040427 10.1007/s11117-021-00816-7 10.1145/3326229.3326254 10.23919/ACC.2019.8814998 10.1007/978-1-4757-3216-0_8 10.1109/CDC.2018.8619144 10.1007/BF02572604 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 |
| Copyright_xml | – notice: The Author(s) 2021 |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s10107-021-01728-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 108 |
| ExternalDocumentID | 10_1007_s10107_021_01728_w |
| GrantInformation_xml | – fundername: Imperial College Research Fellowship – fundername: Clarendon Scholarship – fundername: AFOSR Young Investigator Program |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c335t-a1757fe3133b521adf7b5ce572e2ac9b0a2b709f2dfec6bd83ffeac6670b94fb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720708900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Sat Nov 29 03:34:03 EST 2025 Tue Nov 18 21:08:21 EST 2025 Fri Feb 21 02:45:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Polynomial matrix inequalities 11E25 Polynomial optimization 90C25 90C23 90C06 49M27 Chordal decomposition 12D15 11E76 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c335t-a1757fe3133b521adf7b5ce572e2ac9b0a2b709f2dfec6bd83ffeac6670b94fb3 |
| ORCID | 0000-0002-0808-0944 0000-0003-1545-231X |
| OpenAccessLink | https://link.springer.com/10.1007/s10107-021-01728-w |
| PageCount | 38 |
| ParticipantIDs | crossref_citationtrail_10_1007_s10107_021_01728_w crossref_primary_10_1007_s10107_021_01728_w springer_journals_10_1007_s10107_021_01728_w |
| PublicationCentury | 2000 |
| PublicationDate | 20230100 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Chesi (CR8) 2010; 55 Josz, Molzahn (CR15) 2018; 28 Murty, Kabadi (CR29) 1987; 39 CR39 Zheng, Fantuzzi, Papachristodoulou, Goulart, Wynn (CR55) 2020; 180 CR35 Putinar (CR36) 1993; 42 Putinar, Vasilescu (CR37) 1999; 328 Zheng, Mason, Papachristodoulou (CR56) 2018; 63 CR31 Sun, Andersen, Vandenberghe (CR45) 2014; 24 Henrion, Lasserre (CR14) 2011; 57 Löfberg (CR24) 2009; 54 Reznick (CR38) 1978; 45 Riener, Theobald, Andrén, Lasserre (CR40) 2013; 38 CR2 Grimm, Netzer, Schweighofer (CR13) 2007; 89 CR6 Klep, Magron, Povh (CR17) 2021; 01 CR9 Gatermann, Parrilo (CR12) 2004; 192 CR49 Andersen, Hansson, Vandenberghe (CR3) 2014; 29 Du (CR10) 2017; 19 Andersen, Pakazad, Hansson, Rantzer (CR4) 2014; 59 CR44 Scherer (CR43) 2006; 12 Scherer, Hol (CR42) 2006; 107 Wang, Magron, Lasserre (CR50) 2021; 31 Vandenberghe, Andersen (CR46) 2015; 1 CR18 Lasserre (CR20) 2010 CR54 CR53 CR52 Nie, Demmel (CR33) 2008; 19 Laurent, Putinar, Sullivant (CR22) 2009 Boyd, Vandenberghe (CR7) 2004 Kakimura (CR16) 2010; 433 Lasserre (CR19) 2006; 17 Waki, Kim, Kojima, Muramatsu (CR48) 2006; 17 Agler, Helton, McCullough, Rodman (CR1) 1988; 107 Lasserre (CR21) 2015 Artin (CR5) 1927; 5 Wang, Magron, Lasserre (CR51) 2021; 31 CR28 CR26 Molzahn, Holzer, Lesieutre, DeMarco (CR27) 2013; 28 CR25 Parrilo, Blekherman, Parrilo, Thomas (CR34) 2013 CR23 Rose (CR41) 1970; 32 Vandenberghe, Boyd (CR47) 1996; 38 Nesterov, Nemirovski (CR32) 1994 Fukuda, Kojima, Murota, Nakata (CR11) 2001; 11 Nakata, Fujisawa, Fukuda, Kojima, Murota (CR30) 2003; 95 L Vandenberghe (1728_CR47) 1996; 38 H Waki (1728_CR48) 2006; 17 J Wang (1728_CR50) 2021; 31 KG Murty (1728_CR29) 1987; 39 I Klep (1728_CR17) 2021; 01 N Kakimura (1728_CR16) 2010; 433 1728_CR18 C Scherer (1728_CR42) 2006; 107 S Boyd (1728_CR7) 2004 JB Lasserre (1728_CR20) 2010 C Riener (1728_CR40) 2013; 38 L Vandenberghe (1728_CR46) 2015; 1 1728_CR54 THB Du (1728_CR10) 2017; 19 1728_CR53 Y Nesterov (1728_CR32) 1994 M Fukuda (1728_CR11) 2001; 11 J Nie (1728_CR33) 2008; 19 J Wang (1728_CR51) 2021; 31 Y Zheng (1728_CR56) 2018; 63 Y Zheng (1728_CR55) 2020; 180 1728_CR28 M Putinar (1728_CR37) 1999; 328 1728_CR23 1728_CR26 1728_CR25 Y Sun (1728_CR45) 2014; 24 E Artin (1728_CR5) 1927; 5 D Grimm (1728_CR13) 2007; 89 1728_CR39 C Josz (1728_CR15) 2018; 28 K Gatermann (1728_CR12) 2004; 192 D Henrion (1728_CR14) 2011; 57 J Löfberg (1728_CR24) 2009; 54 B Reznick (1728_CR38) 1978; 45 1728_CR31 G Chesi (1728_CR8) 2010; 55 1728_CR35 M Putinar (1728_CR36) 1993; 42 MS Andersen (1728_CR4) 2014; 59 1728_CR52 MS Andersen (1728_CR3) 2014; 29 M Laurent (1728_CR22) 2009 JB Lasserre (1728_CR21) 2015 DK Molzahn (1728_CR27) 2013; 28 CW Scherer (1728_CR43) 2006; 12 1728_CR2 PA Parrilo (1728_CR34) 2013 1728_CR9 JB Lasserre (1728_CR19) 2006; 17 1728_CR6 K Nakata (1728_CR30) 2003; 95 1728_CR44 J Agler (1728_CR1) 1988; 107 1728_CR49 DJ Rose (1728_CR41) 1970; 32 |
| References_xml | – ident: CR49 – volume: 31 start-page: 30 issue: 1 year: 2021 end-page: 58 ident: CR51 article-title: TSSOS: a moment-SOS hierarchy that exploits term sparsity publication-title: SIAM J. Optim. doi: 10.1137/19M1307871 – ident: CR39 – volume: 5 start-page: 100 issue: 1 year: 1927 end-page: 115 ident: CR5 article-title: Über die Zerlegung definiter Funktionen in Quadrate publication-title: Abh. Math. Semin. Univ. Hambg. doi: 10.1007/BF02952513 – year: 2010 ident: CR20 publication-title: Moments, Positive Polynomials and Their Applications – volume: 12 start-page: 3 issue: 1 year: 2006 end-page: 29 ident: CR43 article-title: LMI relaxations in robust control publication-title: Eur. J. Control doi: 10.3166/ejc.12.3-29 – ident: CR35 – ident: CR54 – volume: 63 start-page: 752 issue: 3 year: 2018 end-page: 767 ident: CR56 article-title: Scalable design of structured controllers using chordal decomposition publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2017.2726578 – volume: 89 start-page: 399 issue: 5 year: 2007 end-page: 403 ident: CR13 article-title: A note on the representation of positive polynomials with structured sparsity publication-title: Arch. Math. (Basel) doi: 10.1007/s00013-007-2234-z – volume: 95 start-page: 303 issue: 2 year: 2003 end-page: 327 ident: CR30 article-title: Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results publication-title: Math. Program. B doi: 10.1007/s10107-002-0351-9 – ident: CR25 – volume: 107 start-page: 101 year: 1988 end-page: 149 ident: CR1 article-title: Positive semidefinite matrices with a given sparsity pattern publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(88)90240-6 – volume: 11 start-page: 647 issue: 3 year: 2001 end-page: 674 ident: CR11 article-title: Exploiting sparsity in semidefinite programming via matrix completion I: general framework publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366218 – volume: 38 start-page: 49 issue: 1 year: 1996 end-page: 95 ident: CR47 article-title: Semidefinite programming publication-title: SIAM Rev. doi: 10.1137/1038003 – volume: 107 start-page: 189 year: 2006 end-page: 211 ident: CR42 article-title: Matrix sum-of-squares relaxations for robust semi-definite programs publication-title: Math. Program. doi: 10.1007/s10107-005-0684-2 – ident: CR9 – volume: 28 start-page: 3987 issue: 4 year: 2013 end-page: 3998 ident: CR27 article-title: Implementation of a large-scale optimal power flow solver based on semidefinite programming publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2258044 – ident: CR26 – volume: 433 start-page: 819 issue: 4 year: 2010 end-page: 823 ident: CR16 article-title: A direct proof for the matrix decomposition of chordal-structured positive semidefinite matrices publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.04.012 – volume: 17 start-page: 822 issue: 3 year: 2006 end-page: 843 ident: CR19 article-title: Convergent SDP-relaxations in polynomial optimization with sparsity publication-title: SIAM J. Optim. doi: 10.1137/05064504X – volume: 17 start-page: 218 issue: 1 year: 2006 end-page: 242 ident: CR48 article-title: Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity publication-title: SIAM J. Optim. doi: 10.1137/050623802 – volume: 59 start-page: 2151 issue: 8 year: 2014 end-page: 2156 ident: CR4 article-title: Robust stability analysis of sparsely interconnected uncertain systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2305934 – ident: CR18 – volume: 31 start-page: 114 issue: 1 year: 2021 end-page: 141 ident: CR50 article-title: Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension publication-title: SIAM J. Optim. doi: 10.1137/20M1323564 – volume: 192 start-page: 95 issue: 1–3 year: 2004 end-page: 128 ident: CR12 article-title: Symmetry groups, semidefinite programs, and sums of squares publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2003.12.011 – ident: CR2 – volume: 39 start-page: 117 issue: 2 year: 1987 end-page: 129 ident: CR29 article-title: Some NP-complete problems in quadratic and nonlinear programming publication-title: Math. Program. doi: 10.1007/BF02592948 – ident: CR53 – volume: 54 start-page: 1007 issue: 5 year: 2009 end-page: 1011 ident: CR24 article-title: Pre-and post-processing sum-of-squares programs in practice publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2009.2017144 – volume: 29 start-page: 1855 issue: 4 year: 2014 end-page: 1863 ident: CR3 article-title: Reduced-complexity semidefinite relaxations of optimal power flow problems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2294479 – ident: CR6 – volume: 32 start-page: 597 issue: 3 year: 1970 end-page: 609 ident: CR41 article-title: Triangulated graphs and the elimination process publication-title: J. Math. Anal. Appl doi: 10.1016/0022-247X(70)90282-9 – year: 2004 ident: CR7 publication-title: Convex Optimization doi: 10.1017/CBO9780511804441 – volume: 01 start-page: 1 year: 2021 end-page: 37 ident: CR17 article-title: Sparse noncommutative polynomial optimization publication-title: Math. Program. – ident: CR23 – start-page: 47 year: 2013 end-page: 157 ident: CR34 article-title: Polynomial optimization, sums of squares and applications publication-title: Semidefinite Optimization and Convex Algebraic Geometry, Chap. 3 – volume: 42 start-page: 969 issue: 3 year: 1993 end-page: 984 ident: CR36 article-title: Positive polynomials on compact semi-algebraic sets publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1993.42.42045 – ident: CR44 – volume: 28 start-page: 1017 issue: 2 year: 2018 end-page: 1048 ident: CR15 article-title: Lasserre hierarchy for large scale polynomial optimization in real and complex variables publication-title: SIAM J. Optim. doi: 10.1137/15M1034386 – volume: 328 start-page: 585 issue: 7 year: 1999 end-page: 589 ident: CR37 article-title: Positive polynomials on semi-algebraic sets publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/S0764-4442(99)80251-1 – volume: 55 start-page: 2500 issue: 11 year: 2010 end-page: 2510 ident: CR8 article-title: LMI techniques for optimization over polynomials in control: a survey publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2046926 – year: 2015 ident: CR21 publication-title: An Introduction to Polynomial and Semi-algebraic Optimization doi: 10.1017/CBO9781107447226 – ident: CR52 – ident: CR31 – volume: 1 start-page: 241 issue: 4 year: 2015 end-page: 433 ident: CR46 article-title: Chordal graphs and semidefinite optimization publication-title: Found. Trends Optim. doi: 10.1561/2400000006 – volume: 19 start-page: 1534 issue: 4 year: 2008 end-page: 1558 ident: CR33 article-title: Sparse SOS relaxations for minimizing functions that are summations of small polynomials publication-title: SIAM J. Optim. doi: 10.1137/060668791 – volume: 38 start-page: 122 issue: 1 year: 2013 end-page: 141 ident: CR40 article-title: Exploiting symmetries in SDP-relaxations for polynomial optimization publication-title: Math. Oper. Res. doi: 10.1287/moor.1120.0558 – start-page: 157 year: 2009 end-page: 270 ident: CR22 article-title: Sums of squares, moment matrices and optimization over polynomials publication-title: Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and its Applications – volume: 180 start-page: 489 year: 2020 end-page: 532 ident: CR55 article-title: Chordal decomposition in operator-splitting methods for sparse semidefinite programs publication-title: Math. Program. doi: 10.1007/s10107-019-01366-3 – volume: 45 start-page: 363 issue: 2 year: 1978 end-page: 374 ident: CR38 article-title: Extremal PSD forms with few terms publication-title: Duke Math. J. doi: 10.1215/S0012-7094-78-04519-2 – ident: CR28 – volume: 57 start-page: 1456 issue: 6 year: 2011 end-page: 1467 ident: CR14 article-title: Inner approximations for polynomial matrix inequalities and robust stability regions publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2178717 – year: 1994 ident: CR32 publication-title: Interior-Point Polynomial Algorithms in Convex Programming doi: 10.1137/1.9781611970791 – volume: 19 start-page: 171 issue: 2 year: 2017 end-page: 182 ident: CR10 article-title: A note on Positivstellensätze for matrix polynomials publication-title: East-West J. Math. – volume: 24 start-page: 873 issue: 2 year: 2014 end-page: 897 ident: CR45 article-title: Decomposition in conic optimization with partially separable structure publication-title: SIAM J. Optim. doi: 10.1137/130926924 – volume: 55 start-page: 2500 issue: 11 year: 2010 ident: 1728_CR8 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2010.2046926 – volume-title: An Introduction to Polynomial and Semi-algebraic Optimization year: 2015 ident: 1728_CR21 doi: 10.1017/CBO9781107447226 – ident: 1728_CR6 doi: 10.1109/CDC.2007.4435026 – volume: 17 start-page: 218 issue: 1 year: 2006 ident: 1728_CR48 publication-title: SIAM J. Optim. doi: 10.1137/050623802 – volume: 59 start-page: 2151 issue: 8 year: 2014 ident: 1728_CR4 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2014.2305934 – volume: 95 start-page: 303 issue: 2 year: 2003 ident: 1728_CR30 publication-title: Math. Program. B doi: 10.1007/s10107-002-0351-9 – volume: 39 start-page: 117 issue: 2 year: 1987 ident: 1728_CR29 publication-title: Math. Program. doi: 10.1007/BF02592948 – volume: 38 start-page: 122 issue: 1 year: 2013 ident: 1728_CR40 publication-title: Math. Oper. Res. doi: 10.1287/moor.1120.0558 – ident: 1728_CR18 – ident: 1728_CR28 – volume: 107 start-page: 101 year: 1988 ident: 1728_CR1 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(88)90240-6 – volume: 192 start-page: 95 issue: 1–3 year: 2004 ident: 1728_CR12 publication-title: J. Pure Appl. Algebra doi: 10.1016/j.jpaa.2003.12.011 – volume: 17 start-page: 822 issue: 3 year: 2006 ident: 1728_CR19 publication-title: SIAM J. Optim. doi: 10.1137/05064504X – volume: 5 start-page: 100 issue: 1 year: 1927 ident: 1728_CR5 publication-title: Abh. Math. Semin. Univ. Hambg. doi: 10.1007/BF02952513 – volume-title: Moments, Positive Polynomials and Their Applications year: 2010 ident: 1728_CR20 – volume: 57 start-page: 1456 issue: 6 year: 2011 ident: 1728_CR14 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2178717 – volume: 433 start-page: 819 issue: 4 year: 2010 ident: 1728_CR16 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.04.012 – volume: 38 start-page: 49 issue: 1 year: 1996 ident: 1728_CR47 publication-title: SIAM Rev. doi: 10.1137/1038003 – volume: 89 start-page: 399 issue: 5 year: 2007 ident: 1728_CR13 publication-title: Arch. Math. (Basel) doi: 10.1007/s00013-007-2234-z – volume: 29 start-page: 1855 issue: 4 year: 2014 ident: 1728_CR3 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2294479 – ident: 1728_CR44 doi: 10.1007/978-0-387-09686-5_9 – volume: 12 start-page: 3 issue: 1 year: 2006 ident: 1728_CR43 publication-title: Eur. J. Control doi: 10.3166/ejc.12.3-29 – volume: 32 start-page: 597 issue: 3 year: 1970 ident: 1728_CR41 publication-title: J. Math. Anal. Appl doi: 10.1016/0022-247X(70)90282-9 – volume-title: Convex Optimization year: 2004 ident: 1728_CR7 doi: 10.1017/CBO9780511804441 – volume: 19 start-page: 171 issue: 2 year: 2017 ident: 1728_CR10 publication-title: East-West J. Math. – start-page: 47 volume-title: Semidefinite Optimization and Convex Algebraic Geometry, Chap. 3 year: 2013 ident: 1728_CR34 – volume: 31 start-page: 30 issue: 1 year: 2021 ident: 1728_CR51 publication-title: SIAM J. Optim. doi: 10.1137/19M1307871 – ident: 1728_CR23 – volume-title: Interior-Point Polynomial Algorithms in Convex Programming year: 1994 ident: 1728_CR32 doi: 10.1137/1.9781611970791 – ident: 1728_CR31 doi: 10.4171/022-1/17 – volume: 107 start-page: 189 year: 2006 ident: 1728_CR42 publication-title: Math. Program. doi: 10.1007/s10107-005-0684-2 – volume: 28 start-page: 1017 issue: 2 year: 2018 ident: 1728_CR15 publication-title: SIAM J. Optim. doi: 10.1137/15M1034386 – ident: 1728_CR35 doi: 10.1109/CDC.2014.7040427 – ident: 1728_CR9 doi: 10.1007/s11117-021-00816-7 – start-page: 157 volume-title: Emerging Applications of Algebraic Geometry, The IMA Volumes in Mathematics and its Applications year: 2009 ident: 1728_CR22 – volume: 42 start-page: 969 issue: 3 year: 1993 ident: 1728_CR36 publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1993.42.42045 – volume: 11 start-page: 647 issue: 3 year: 2001 ident: 1728_CR11 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366218 – volume: 328 start-page: 585 issue: 7 year: 1999 ident: 1728_CR37 publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/S0764-4442(99)80251-1 – volume: 180 start-page: 489 year: 2020 ident: 1728_CR55 publication-title: Math. Program. doi: 10.1007/s10107-019-01366-3 – volume: 45 start-page: 363 issue: 2 year: 1978 ident: 1728_CR38 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-78-04519-2 – volume: 28 start-page: 3987 issue: 4 year: 2013 ident: 1728_CR27 publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2258044 – volume: 31 start-page: 114 issue: 1 year: 2021 ident: 1728_CR50 publication-title: SIAM J. Optim. doi: 10.1137/20M1323564 – ident: 1728_CR49 doi: 10.1145/3326229.3326254 – volume: 19 start-page: 1534 issue: 4 year: 2008 ident: 1728_CR33 publication-title: SIAM J. Optim. doi: 10.1137/060668791 – ident: 1728_CR54 doi: 10.23919/ACC.2019.8814998 – ident: 1728_CR26 – ident: 1728_CR25 – volume: 24 start-page: 873 issue: 2 year: 2014 ident: 1728_CR45 publication-title: SIAM J. Optim. doi: 10.1137/130926924 – volume: 63 start-page: 752 issue: 3 year: 2018 ident: 1728_CR56 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2017.2726578 – ident: 1728_CR2 doi: 10.1007/978-1-4757-3216-0_8 – ident: 1728_CR53 doi: 10.1109/CDC.2018.8619144 – volume: 01 start-page: 1 year: 2021 ident: 1728_CR17 publication-title: Math. Program. – ident: 1728_CR52 – volume: 54 start-page: 1007 issue: 5 year: 2009 ident: 1728_CR24 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2009.2017144 – volume: 1 start-page: 241 issue: 4 year: 2015 ident: 1728_CR46 publication-title: Found. Trends Optim. doi: 10.1561/2400000006 – ident: 1728_CR39 doi: 10.1007/BF02572604 |
| SSID | ssj0001388 |
| Score | 2.4701376 |
| Snippet | We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin,... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 71 |
| SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| Title | Sum-of-squares chordal decomposition of polynomial matrix inequalities |
| URI | https://link.springer.com/article/10.1007/s10107-021-01728-w |
| Volume | 197 |
| WOSCitedRecordID | wos000720708900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCDb7G-yMGbLjSP3c0eRSwetAjV0lvIvkBom9o0Vv-9u8mmtiAFPYZMhjDZzGN3vm8ArrAJY0xibqkvKYqYFiiOcISIJlpy6XNZjgPqPdJOJ-732bMDheV1t3t9JFl66gWwm2-31QJb_tIgRrN12MCWbcbW6N3e3P_6YRzXg1ptduCgMr_rWA5Hy2ehZYhp7_7v5fZgx6WU3m21BvZhTY0OYHuBaNBcPc3ZWfNDaHeLIco0yt8Liz7yjAecSKNBKttg7rq4vEx742zwZWHL5t7QUvl_ekZlBcM0BfYRvLbvX-4ekJungEQY4ilKTapAtQpNWcpN1E6lphwLhWmgglQw3koDTltMB1IrQbiMQ62NXyaEtjiLNA-PoTHKRuoEPCxMWUJFSmIio0gSHmKtIqIICyTDSjfBr82aCEc2bmdeDJIfmmRrscRYLCktlsyacD1_ZlxRbayUvqm_ROJ-u3yF-OnfxM9gy86Vr_ZazqExnRTqAjbFx_Qtn1yW6-0bVWzRRQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1ifOXjTheaxu9mjiKViW4TW0lvIvkBom9q0Vv-9u2lSW5CCHkMmQ5hs5rE73zcAN9iEMSYxt9SXFAVMCxQGOEBEEy25dLnMxgF16rTZDLtd9pKDwtKi2704ksw89QLYzbXbap4tf6kXouk6bAR2zI6t0Vuduf91_TAsBrXa7CCHyvyuYzkcLZ-FZiGmuve_l9uH3TyldO5na-AA1tTgEHYWiAbNVWPOzpoeQbU16aNEo_R9YtFHjvGAI2k0SGUbzPMuLifRzjDpfVnYsrnXt1T-n45ROYNhmgL7GF6rj-2HGsrnKSDh-3iMYpMqUK18U5ZyE7VjqSnHQmHqKS8WjFdij9MK057UShAuQ19r45cJoRXOAs39EygNkoE6BQcLU5ZQEZOQyCCQhPtYq4AowjzJsNJlcAuzRiInG7czL3rRD02ytVhkLBZlFoumZbidPzOcUW2slL4rvkSU_3bpCvGzv4lfw1at3ahH9afm8zls2xnzs32XCyiNRxN1CZviY_yWjq6ytfcNLqfUKQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60iujBt1ifOXjTpU2yj-QoalCspVgtvYXsC4S2qU1q9d-7m0dtQQriMclkCLObmZ3d-b4B4ALrMOYLzAz1JYXIVxx6CCNIFFGCCZuJrB1Qp0GbTa_b9VszKP6s2r08kswxDYalaZDWhkLVZoBvttlic0wqTB0PTpbBCtK3TFHXc7sz9cW263ll01azUihgM7_rmA9N8-eiWbgJtv7_odtgs1hqWtf53NgBS3KwCzZmCAj11dOUtTXZA0F73Iexgsn72KCSLO0ZR0JrENIUnhfVXVasrGHc-zJwZv2sbyj-Py2tModn6sR7H7wGdy8397DoswC56-IURnoJQZV0dbrKdDSPhKIMc4mpI52I-6weOYzWfeUIJTlhwnOV0v6aEFpnPlLMPQCVQTyQh8DCXKcrlEfEIwIhQZiLlUREEt8RPpaqCuzSxCEvSMhNL4xe-EOfbCwWaouFmcXCSRVcTt8Z5hQcC6WvylEJi98xWSB-9Dfxc7DWug3CxkPz8Rism9bz-XbMCaiko7E8Bav8I31LRmfZNPwGIbzdDQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum-of-squares+chordal+decomposition+of+polynomial+matrix+inequalities&rft.jtitle=Mathematical+programming&rft.au=Zheng%2C+Yang&rft.au=Fantuzzi%2C+Giovanni&rft.date=2023-01-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=197&rft.issue=1&rft.spage=71&rft.epage=108&rft_id=info:doi/10.1007%2Fs10107-021-01728-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_021_01728_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |