Uncertainty Evaluation of Object Detection Algorithms for Autonomous Vehicles

The safety of the intended functionality (SOTIF) has become one of the hottest topics in the field of autonomous driving. However, no testing and evaluating system for SOTIF performance has been proposed yet. Therefore, this paper proposes a framework based on the advanced You Only Look Once (YOLO) ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automotive innovation (Online) Jg. 4; H. 3; S. 241 - 252
Hauptverfasser: Peng, Liang, Wang, Hong, Li, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.08.2021
Schlagworte:
ISSN:2096-4250, 2522-8765
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The safety of the intended functionality (SOTIF) has become one of the hottest topics in the field of autonomous driving. However, no testing and evaluating system for SOTIF performance has been proposed yet. Therefore, this paper proposes a framework based on the advanced You Only Look Once (YOLO) algorithm and the mean Average Precision (mAP) method to evaluate the object detection performance of the camera under SOTIF-related scenarios. First, a dataset is established, which contains road images with extreme weather and adverse lighting conditions. Second, the Monte Carlo dropout (MCD) method is used to analyze the uncertainty of the algorithm and draw the uncertainty region of the predicted bounding box. Then, the confidence of the algorithm is calibrated based on uncertainty results so that the average confidence after calibration can better reflect the real accuracy. The uncertainty results and the calibrated confidence are proposed to be used for online risk identification. Finally, the confusion matrix is extended according to the several possible mistakes that the object detection algorithm may make, and then the mAP is calculated as an index for offline evaluation and comparison. This paper offers suggestions to apply the MCD method to complex object detection algorithms and to find the relationship between the uncertainty and the confidence of the algorithm. The experimental results verified by specific SOTIF scenarios proof the feasibility and effectiveness of the proposed uncertainty acquisition approach for object detection algorithm, which provides potential practical implementation chance to address perceptual related SOTIF risk for autonomous vehicles.
AbstractList The safety of the intended functionality (SOTIF) has become one of the hottest topics in the field of autonomous driving. However, no testing and evaluating system for SOTIF performance has been proposed yet. Therefore, this paper proposes a framework based on the advanced You Only Look Once (YOLO) algorithm and the mean Average Precision (mAP) method to evaluate the object detection performance of the camera under SOTIF-related scenarios. First, a dataset is established, which contains road images with extreme weather and adverse lighting conditions. Second, the Monte Carlo dropout (MCD) method is used to analyze the uncertainty of the algorithm and draw the uncertainty region of the predicted bounding box. Then, the confidence of the algorithm is calibrated based on uncertainty results so that the average confidence after calibration can better reflect the real accuracy. The uncertainty results and the calibrated confidence are proposed to be used for online risk identification. Finally, the confusion matrix is extended according to the several possible mistakes that the object detection algorithm may make, and then the mAP is calculated as an index for offline evaluation and comparison. This paper offers suggestions to apply the MCD method to complex object detection algorithms and to find the relationship between the uncertainty and the confidence of the algorithm. The experimental results verified by specific SOTIF scenarios proof the feasibility and effectiveness of the proposed uncertainty acquisition approach for object detection algorithm, which provides potential practical implementation chance to address perceptual related SOTIF risk for autonomous vehicles.
Author Li, Jun
Peng, Liang
Wang, Hong
Author_xml – sequence: 1
  givenname: Liang
  surname: Peng
  fullname: Peng, Liang
  organization: Tsinghua University
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-5127-2941
  surname: Wang
  fullname: Wang, Hong
  email: hong_wang@tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 3
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Tsinghua University
BookMark eNp9kMtOQjEQhhuDiYi8gKvzAtXp7VyWBPGSaNiI26antHDIoTVtjwlvbwFXLljNn8l8k5nvFo2cdwahewIPBKB6jJwSwTFQggFO6QqNqaAU11UpRjlDU2JOBdygaYw7AGAADWXVGH2snDYhqc6lQ7H4Uf2gUudd4W2xbHdGp-LJpFyOvVm_8aFL230srA_FbEje-b0fYvFltp3uTbxD11b10Uz_6gStnhef81f8vnx5m8_esWZMJNwQVVWWV6I1LfBWUygbynVL17S2itTWKN1ozgTwslR13QI1jVoTnkHFtGITVJ_36uBjDMZK3aXT4SmorpcE5NGMPJuR2Yw8mZGQUfoP_Q7dXoXDZYidoZiH3cYEufNDcPnFS9Qvbd541A
CitedBy_id crossref_primary_10_1109_TIV_2022_3196396
crossref_primary_10_3390_a17110526
crossref_primary_10_1109_TIM_2022_3196954
crossref_primary_10_1007_s42154_022_00196_y
crossref_primary_10_1109_TIM_2022_3191724
crossref_primary_10_1109_TIV_2023_3271867
crossref_primary_10_1007_s00500_023_09278_3
crossref_primary_10_1109_TIV_2022_3227921
crossref_primary_10_1016_j_cities_2025_106098
crossref_primary_10_3390_s23052867
crossref_primary_10_1109_TIM_2023_3256459
crossref_primary_10_1109_TITS_2023_3278695
crossref_primary_10_3390_rs14215583
crossref_primary_10_1007_s42154_022_00207_y
crossref_primary_10_1007_s42154_023_00245_0
crossref_primary_10_1088_1361_6501_ac87c6
crossref_primary_10_3390_sym14112262
crossref_primary_10_1016_j_aap_2024_107903
crossref_primary_10_1007_s13177_025_00476_x
crossref_primary_10_1016_j_iot_2022_100635
crossref_primary_10_1109_TVT_2024_3369100
crossref_primary_10_1109_TITS_2025_3568379
crossref_primary_10_1007_s10664_024_10520_1
crossref_primary_10_1080_15472450_2025_2499591
crossref_primary_10_1109_TITS_2025_3539095
crossref_primary_10_1002_adma_202404763
crossref_primary_10_1109_TIM_2025_3602549
crossref_primary_10_1109_TIV_2023_3341144
crossref_primary_10_1016_j_engappai_2023_107766
crossref_primary_10_1109_TITS_2022_3197602
crossref_primary_10_1371_journal_pone_0275538
crossref_primary_10_1109_TITS_2023_3322166
crossref_primary_10_1109_TVT_2024_3408162
crossref_primary_10_3390_app12188948
crossref_primary_10_7467_KSAE_2024_32_4_331
crossref_primary_10_1007_s42154_023_00270_z
crossref_primary_10_1007_s42154_023_00279_4
crossref_primary_10_1109_TIV_2023_3299845
crossref_primary_10_1109_TITS_2023_3321309
Cites_doi 10.4271/12-03-04-0020
10.1109/CVPR42600.2020.00271
10.1109/TITS.2018.2873921
10.1109/MITS.2019.2953556
10.5244/C.31.57
10.1016/j.ins.2017.01.013
10.1109/ICRA.2019.8793821
10.1016/j.cviu.2019.05.003
10.1016/j.cmpb.2020.105381
10.1109/ICRA.2018.8460700
10.1007/978-3-319-10602-1_48
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s42154-021-00154-0
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2522-8765
EndPage 252
ExternalDocumentID 10_1007_s42154_021_00154_0
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program)
  grantid: 2020YFB1600303
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: National Science Foundation of China Project
  grantid: U1964203; 52072215
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
C6C
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c335t-91a77f475beb04bc206924cb2d28fa18feac9c4350466a88b02e9ad1491aa3ca3
IEDL.DBID RSV
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000680568800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2096-4250
IngestDate Sat Nov 29 02:58:22 EST 2025
Tue Nov 18 22:23:16 EST 2025
Fri Feb 21 02:47:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Uncertainty evaluation
Confidence calibration
SOTIF
Autonomous vehicles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-91a77f475beb04bc206924cb2d28fa18feac9c4350466a88b02e9ad1491aa3ca3
ORCID 0000-0002-5127-2941
OpenAccessLink https://link.springer.com/10.1007/s42154-021-00154-0
PageCount 12
ParticipantIDs crossref_citationtrail_10_1007_s42154_021_00154_0
crossref_primary_10_1007_s42154_021_00154_0
springer_journals_10_1007_s42154_021_00154_0
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Automotive innovation (Online)
PublicationTitleAbbrev Automot. Innov
PublicationYear 2021
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References Azevedo, T., de Jong, R., Mattina, M., Maji, P.: Stochastic-YOLO: efficient probabilistic object detection under dataset shifts. In: Paper Presented at the 34th Conference and Workshop on Neural Information Processing Systems, Vancouver, Canada, 6–12 December 2020.
Zhu, L., Laptev, N.: Deep and confident prediction for time series at Uber. In: Paper Presented at the 17th IEEE International Conference on Data Mining Workshops, New Orleans, Los Angeles, 18–21 November (2017).
Lin, C.H., Hsu, K.C., Johnson, K.R., et al.: Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry. Comput. Meth. Programs Biomed. 190,(2020)
Geiger, A., Lenz, P. S., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. 32(11), 1–6 (2013).
Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware reinforcement learning for collision avoidance. Mach. Learn. 1702.01182 (2017). https://arxiv.org/abs/1702.01182v1
Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In: Paper Presented at the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, 27–30 June 2016.
Mukhoti, J., Gal, Y.: Evaluating Bayesian deep learning methods for semantic segmentation. In: Paper presented at the 32nd IEEE Conference on Computer Vision and Pattern Recognition Workshops 2019, Long Beach, California, 16–20 June 2019.
Miller D, Dayoub F, Milford M, et al.: Evaluating merging strategies for sampling-based uncertainty techniques in object detection. In: Paper Presented at the 2019 IEEE International Conference on Robotics and Automation, Montreal, Quebec, 20–24 May 2019.
Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass probability estimates. In: Paper presented at the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Edmonton, 23–26 July (2002).
Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: Paper Presented at the 33rd International Conference on Machine Learning, New York City, 19–24 June (2016).
Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In: Paper presented at the 18th International Conference on Machine Learning, Williams College, Massachusetts, June 28 – July 1 (2001).
ShaoLCaiZLiuLLuKPerformance evaluation of deep feature learning for RGB-D image/video classificationInf. Sci.201738526628310.1016/j.ins.2017.01.013
HintonGESrivastavaNKrizhevskyAImproving neural networks by preventing co-adaptation of feature detectorsComput. Sci.201234212223
Miller D, Nicholson L, Dayoub F, et al.: Dropout sampling for robust object detection in open-set conditions. In: Paper Presented at the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018.
Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under uncertainty. In: Paper presented at the 31st IEEE Conference on Computer Vision and Pattern Recognition, Michael Brown, Salt Lake City, 18–22 June (2018).
Osband, I.: Risk versus uncertainty in deep learning: bayes, bootstrap and the dangers of dropout. In: Paper presented at the 30th Conference and Workshop on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.
International Organization for Standardization: ISO/Pas 21448-road vehicles-safety of the intended functionality. Geneva, Switzerland (2019)
PlattJProbabilistic outputs for support vector machines and comparisons to regularized likelihood methodsAdv Large Margin Classif19991036174
WangHHuangYKhajepourAZhangYRasekhipourYCaoDCrash mitigation in motion planning for autonomous vehiclesIEEE Trans. Intell. Transp. Syst.20192093313332310.1109/TITS.2018.2873921
Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: Bdd100k: a diverse driving video database for heterogeneous multitask learning. In: Paper Presented at the 33rd IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Washington, 13–19 June 2020.
Wang, H., Huang, Y., Khajepour, A., Cao, D., Lv, C.: Ethical decision-making platform in autonomous vehicles with lexicographic optimization based model predictive controller. IEEE Trans. Veh. Technol. 69(8), 8164–8175 (2020).
NealRMMCMC using Hamiltonian dynamicsHandbook Markov Chain Monte Carlo.201121121229.65018
WishartJComoSForgioneUWeastJLiterature review of verification and validation activities of automated driving systemsSAE Int. J. Connect. Automat. Veh.20203426732310.4271/12-03-04-0020
Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: Paper presented at the 32nd International Conference on Machine Learning, Lille, France, 6–11 July (2015).
Lin, T. Y., Maire, M., Belongie, S., et al.: Microsoft coco: common objects in context. In: Paper presented at the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014.
GalYGhahramaniZA theoretically grounded application of dropout in recurrent neural networksAdv. Neural. Inf. Process. Syst.20162910191027
Michelmore, R., Wicker, M., Laurenti, L., Cardelli, L., Gal, Y., Kwiatkowska, M.: Uncertainty quantification with statistical guarantees in end-to-end autonomous driving control. In: Paper presented at the 2020 IEEE International Conference on Robotics and Automation, Paris, France, May 31 – August 31 (2020).
Guo, C., Pleiss, G., Sun, Y., Weinberger, K. Q.: On calibration of modern neural networks. In: Paper presented at the 34th International Conference on Machine Learning, International Machine Learning Society, Sydney, 6–11 August (2017).
Wang, H., Khajepour, A., Cao, D., Liu, T.: Ethical decision making in autonomous vehicles: challenges and research progress. IEEE Intell. Transp. Syst. Mag. (2020). https://doi.org/10.1109/MITS.2019.2953556
LiSRenWZhangJYuJGuoXSingle image rain removal via a deep decomposition-composition networkComput. Vis. Image. Underst.2019186485710.1016/j.cviu.2019.05.003
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. In: Paper presented at the 31st IEEE Conference on Computer Vision and Pattern Recognition, Michael Brown, Salt Lake City, 18–22 June 2018.
Naeini, M. P., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. In: Paper presented at the 29th AAAI Conference on Artificial Intelligence, American Association for Artificial Intelligence, Austin, 25–30 January (2015).
Miller, D., Sünderhauf, N., Zhang H, et al.: Benchmarking sampling-based probabilistic object detectors. In: Paper Presented at the 32nd IEEE Conference on Computer Vision and Pattern Recognition Workshops 2019, Long Beach, California, 16–20 June 2019.
Kendall, A., & Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Paper presented at the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 21–26 July 2017.
154_CR30
154_CR11
154_CR33
154_CR12
154_CR34
S Li (154_CR32) 2019; 186
Y Gal (154_CR22) 2016; 29
J Wishart (154_CR31) 2020; 3
H Wang (154_CR17) 2019; 20
154_CR26
154_CR27
154_CR24
154_CR25
154_CR29
J Platt (154_CR7) 1999; 10
154_CR23
154_CR20
RM Neal (154_CR10) 2011; 2
154_CR9
154_CR8
GE Hinton (154_CR21) 2012; 3
154_CR6
154_CR1
154_CR15
154_CR16
154_CR13
154_CR14
154_CR5
154_CR19
154_CR4
154_CR3
154_CR2
154_CR18
L Shao (154_CR28) 2017; 385
References_xml – reference: Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In: Paper presented at the 18th International Conference on Machine Learning, Williams College, Massachusetts, June 28 – July 1 (2001).
– reference: Miller D, Nicholson L, Dayoub F, et al.: Dropout sampling for robust object detection in open-set conditions. In: Paper Presented at the 2018 IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018.
– reference: Wang, H., Khajepour, A., Cao, D., Liu, T.: Ethical decision making in autonomous vehicles: challenges and research progress. IEEE Intell. Transp. Syst. Mag. (2020). https://doi.org/10.1109/MITS.2019.2953556
– reference: Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: Bdd100k: a diverse driving video database for heterogeneous multitask learning. In: Paper Presented at the 33rd IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Washington, 13–19 June 2020.
– reference: Guo, C., Pleiss, G., Sun, Y., Weinberger, K. Q.: On calibration of modern neural networks. In: Paper presented at the 34th International Conference on Machine Learning, International Machine Learning Society, Sydney, 6–11 August (2017).
– reference: NealRMMCMC using Hamiltonian dynamicsHandbook Markov Chain Monte Carlo.201121121229.65018
– reference: Michelmore, R., Wicker, M., Laurenti, L., Cardelli, L., Gal, Y., Kwiatkowska, M.: Uncertainty quantification with statistical guarantees in end-to-end autonomous driving control. In: Paper presented at the 2020 IEEE International Conference on Robotics and Automation, Paris, France, May 31 – August 31 (2020).
– reference: GalYGhahramaniZA theoretically grounded application of dropout in recurrent neural networksAdv. Neural. Inf. Process. Syst.20162910191027
– reference: Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass probability estimates. In: Paper presented at the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Edmonton, 23–26 July (2002).
– reference: Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: Paper Presented at the 33rd International Conference on Machine Learning, New York City, 19–24 June (2016).
– reference: Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In: Paper Presented at the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, 27–30 June 2016.
– reference: Miller, D., Sünderhauf, N., Zhang H, et al.: Benchmarking sampling-based probabilistic object detectors. In: Paper Presented at the 32nd IEEE Conference on Computer Vision and Pattern Recognition Workshops 2019, Long Beach, California, 16–20 June 2019.
– reference: Wang, H., Huang, Y., Khajepour, A., Cao, D., Lv, C.: Ethical decision-making platform in autonomous vehicles with lexicographic optimization based model predictive controller. IEEE Trans. Veh. Technol. 69(8), 8164–8175 (2020).
– reference: WishartJComoSForgioneUWeastJLiterature review of verification and validation activities of automated driving systemsSAE Int. J. Connect. Automat. Veh.20203426732310.4271/12-03-04-0020
– reference: Azevedo, T., de Jong, R., Mattina, M., Maji, P.: Stochastic-YOLO: efficient probabilistic object detection under dataset shifts. In: Paper Presented at the 34th Conference and Workshop on Neural Information Processing Systems, Vancouver, Canada, 6–12 December 2020.
– reference: Mukhoti, J., Gal, Y.: Evaluating Bayesian deep learning methods for semantic segmentation. In: Paper presented at the 32nd IEEE Conference on Computer Vision and Pattern Recognition Workshops 2019, Long Beach, California, 16–20 June 2019.
– reference: Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. In: Paper presented at the 31st IEEE Conference on Computer Vision and Pattern Recognition, Michael Brown, Salt Lake City, 18–22 June 2018.
– reference: Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: Paper presented at the 32nd International Conference on Machine Learning, Lille, France, 6–11 July (2015).
– reference: Kendall, A., & Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Paper presented at the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 21–26 July 2017.
– reference: Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware reinforcement learning for collision avoidance. Mach. Learn. 1702.01182 (2017). https://arxiv.org/abs/1702.01182v1
– reference: Miller D, Dayoub F, Milford M, et al.: Evaluating merging strategies for sampling-based uncertainty techniques in object detection. In: Paper Presented at the 2019 IEEE International Conference on Robotics and Automation, Montreal, Quebec, 20–24 May 2019.
– reference: Lin, C.H., Hsu, K.C., Johnson, K.R., et al.: Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry. Comput. Meth. Programs Biomed. 190,(2020)
– reference: Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under uncertainty. In: Paper presented at the 31st IEEE Conference on Computer Vision and Pattern Recognition, Michael Brown, Salt Lake City, 18–22 June (2018).
– reference: Geiger, A., Lenz, P. S., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. 32(11), 1–6 (2013).
– reference: PlattJProbabilistic outputs for support vector machines and comparisons to regularized likelihood methodsAdv Large Margin Classif19991036174
– reference: Zhu, L., Laptev, N.: Deep and confident prediction for time series at Uber. In: Paper Presented at the 17th IEEE International Conference on Data Mining Workshops, New Orleans, Los Angeles, 18–21 November (2017).
– reference: LiSRenWZhangJYuJGuoXSingle image rain removal via a deep decomposition-composition networkComput. Vis. Image. Underst.2019186485710.1016/j.cviu.2019.05.003
– reference: International Organization for Standardization: ISO/Pas 21448-road vehicles-safety of the intended functionality. Geneva, Switzerland (2019)
– reference: Lin, T. Y., Maire, M., Belongie, S., et al.: Microsoft coco: common objects in context. In: Paper presented at the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014.
– reference: WangHHuangYKhajepourAZhangYRasekhipourYCaoDCrash mitigation in motion planning for autonomous vehiclesIEEE Trans. Intell. Transp. Syst.20192093313332310.1109/TITS.2018.2873921
– reference: HintonGESrivastavaNKrizhevskyAImproving neural networks by preventing co-adaptation of feature detectorsComput. Sci.201234212223
– reference: ShaoLCaiZLiuLLuKPerformance evaluation of deep feature learning for RGB-D image/video classificationInf. Sci.201738526628310.1016/j.ins.2017.01.013
– reference: Osband, I.: Risk versus uncertainty in deep learning: bayes, bootstrap and the dangers of dropout. In: Paper presented at the 30th Conference and Workshop on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.
– reference: Naeini, M. P., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. In: Paper presented at the 29th AAAI Conference on Artificial Intelligence, American Association for Artificial Intelligence, Austin, 25–30 January (2015).
– ident: 154_CR6
– volume: 3
  start-page: 267
  issue: 4
  year: 2020
  ident: 154_CR31
  publication-title: SAE Int. J. Connect. Automat. Veh.
  doi: 10.4271/12-03-04-0020
– ident: 154_CR4
– ident: 154_CR30
  doi: 10.1109/CVPR42600.2020.00271
– ident: 154_CR8
– volume: 29
  start-page: 1019
  year: 2016
  ident: 154_CR22
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 154_CR23
– ident: 154_CR29
– ident: 154_CR25
– volume: 20
  start-page: 3313
  issue: 9
  year: 2019
  ident: 154_CR17
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2873921
– ident: 154_CR16
  doi: 10.1109/MITS.2019.2953556
– ident: 154_CR24
  doi: 10.5244/C.31.57
– volume: 10
  start-page: 61
  issue: 3
  year: 1999
  ident: 154_CR7
  publication-title: Adv Large Margin Classif
– ident: 154_CR14
– ident: 154_CR1
– volume: 3
  start-page: 212
  issue: 4
  year: 2012
  ident: 154_CR21
  publication-title: Comput. Sci.
– volume: 385
  start-page: 266
  year: 2017
  ident: 154_CR28
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.01.013
– ident: 154_CR3
– ident: 154_CR12
– ident: 154_CR18
– ident: 154_CR33
– ident: 154_CR5
– ident: 154_CR26
  doi: 10.1109/ICRA.2019.8793821
– ident: 154_CR9
– volume: 186
  start-page: 48
  year: 2019
  ident: 154_CR32
  publication-title: Comput. Vis. Image. Underst.
  doi: 10.1016/j.cviu.2019.05.003
– volume: 2
  start-page: 2
  issue: 11
  year: 2011
  ident: 154_CR10
  publication-title: Handbook Markov Chain Monte Carlo.
– ident: 154_CR2
  doi: 10.1016/j.cmpb.2020.105381
– ident: 154_CR27
  doi: 10.1109/ICRA.2018.8460700
– ident: 154_CR19
– ident: 154_CR13
– ident: 154_CR11
– ident: 154_CR20
  doi: 10.1007/978-3-319-10602-1_48
– ident: 154_CR15
– ident: 154_CR34
SSID ssj0003009237
ssib052855666
Score 2.4066198
Snippet The safety of the intended functionality (SOTIF) has become one of the hottest topics in the field of autonomous driving. However, no testing and evaluating...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 241
SubjectTerms Automotive Engineering
Energy Systems
Engineering
Mechanical Engineering
Title Uncertainty Evaluation of Object Detection Algorithms for Autonomous Vehicles
URI https://link.springer.com/article/10.1007/s42154-021-00154-0
Volume 4
WOSCitedRecordID wos000680568800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2522-8765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003009237
  issn: 2096-4250
  databaseCode: RSV
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iPuiD3-L8Ig--aSBNkzV9HLrhg05RN_ZW0jR1k9nJ2gn-916ytjiQgb6VkpZyd7n7XfO7O4QuhAy18cOESC4M4amCK08HRNhRLzzwE-VGJ_Tvgm5XDgbhY1kUllds9-pI0nnqutiNQ3TixFIKXOAnkKivQbiTdjs-PfcrKxJMClGB8jeH-SmgGFs3zQCvEzBSWlbP_P7axQi1eDzqok5n-3_fu4O2SpSJW3Oz2EUrJttDmz96D-6j-x6o29EBii_crnt-40mKH2L7cwbfmMLxtDLcGr9OpqNi-J5jwLi4NStsKcRkluO-GTpe3QHqddov17eknK1AtO-LAnycCoKUByI2MeWxZrQJmZiOWcJkqjyZgkMONWApyJ-bSsqYMhOqBPIpTylfK_8QrWaTzBwhzCjcNyFAvyTmXKSS6lDIJEht9uNT00BeJc9Il43H7fyLcVS3THaiikBUkRNVRBvosn7mY952Y-nqq0oFUbkF8yXLj_-2_ARtMKdFy_o7RavFdGbO0Lr-LEb59NzZ3jdUVM9g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-igvrgtzg_8-CbFrI2WdPHoRsTtym6jb2VNE3dZLaydoL_vZesLQ5koG8lpKXcXe9-1_zuDqErxj2pHC-0OGXKopGAq6p0LaZHvVDXCYUZnTBou90uHw69p7woLC3Y7sWRpPHUZbEbhehELU0pMIHfgkR9Ta9pIt_zy6CwImZzxgpQ_mYwPwEUo-umbcDrFhgpyatnfn_sYoRaPB41Uae587_33UXbOcrE9blZ7KEVFe-jrR-9Bw9Qpw_qNnSA7As3yp7fOInwY6B_zuA7lRmeVozrk9dkOs5G7ykGjIvrs0yXQiSzFA_UyPDqDlG_2ejdtqx8toIlHYdl4OOE60bUZYEKCA2kTWqQicnADm0eiSqPwCF7ErAU5M81wXlAbOWJEPKpqhCOFM4RWo2TWB0jbBNYVx5AvzCglEWcSI_x0I109uMQVUHVQp6-zBuP6_kXE79smWxE5YOofCMqn1TQdXnPx7ztxtLdN4UK_PwTTJdsP_nb9ku00ep12n77vvtwijZto1HNADxDq9l0ps7RuvzMxun0wtjhNxZP0kQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA6iIvrgb3H-zINvWpa1yZo-DrehOOdAN_ZW0jR1k9mNtRP8771kbdlABuJbKUkpl2vuu-a77xC6YdyTyvFCi1OmLBoJuKpI12K61Qt1nVCY1gm9lttu837f6yxU8Ru2e34kOa9p0CpNcVqehFG5KHyjEKmopekFBgRYkLRvUN00SOfrr73co5jNGcsB-ofB_wQQja6htgG7W-CwJKuk-f2xy9Fq-ajURKDm3v_ffR_tZugT1-bucoDWVHyIdhY0CY_QcxfcwNAE0m_cKLTA8TjCL4H-aYPrKjX8rRjXRu_j6TAdfCYYsC-uzVJdIjGeJbinBoZvd4y6zcbb_YOV9VywpOOwFPY-4boRdVmgAkIDaZMqZGgysEObR6LCI9ioPQkYC_LqquA8ILbyRAh5VkUIRwrnBK3H41idImwTuK88gIRhQCmLOJEe46Eb6azIIaqEKrltfZkJkuu-GCO_kFI2pvLBVL4xlU9K6LaYM5nLcawcfZcvh599msmK4Wd_G36Ntjr1pt96bD-do23bLKgmBl6g9XQ6U5doU36lw2R6ZVzyB0mN2yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+Evaluation+of+Object+Detection+Algorithms+for+Autonomous+Vehicles&rft.jtitle=Automotive+innovation+%28Online%29&rft.au=Peng%2C+Liang&rft.au=Wang%2C+Hong&rft.au=Li%2C+Jun&rft.date=2021-08-01&rft.issn=2096-4250&rft.eissn=2522-8765&rft.volume=4&rft.issue=3&rft.spage=241&rft.epage=252&rft_id=info:doi/10.1007%2Fs42154-021-00154-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42154_021_00154_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-4250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-4250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-4250&client=summon