Change surface regression for nonlinear subgroup identification with application to warfarin pharmacogenomics data

Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biometrics Ročník 81; číslo 1
Hlavní autori: Liu, Pan, Li, Yaguang, Li, Jialiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 07.01.2025
Predmet:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations. To capture the between-patient heterogeneity in dosing requirement, we formulate a novel change surface model as a model-based approach for multiple subgroup identification in complex datasets. A key feature of our approach is its ability to accommodate nonlinear subgroup divisions, providing a clearer understanding of dynamic drug-gene associations. Furthermore, our model effectively handles high-dimensional data through a doubly penalized approach, ensuring both interpretability and adaptability. We propose an iterative 2-stage method that combines a change point detection technique in the first stage with a smoothed local adaptive majorize-minimization algorithm for surface regression in the second stage. Performance of the proposed methods is evaluated through extensive numerical studies. Application of our method to the IWPC dataset leads to significant new findings, where 3 subgroups subject to different pharmacogenomic relationships are identified, contributing valuable insights into the complex dynamics of drug-gene associations in patients.
AbstractList Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations. To capture the between-patient heterogeneity in dosing requirement, we formulate a novel change surface model as a model-based approach for multiple subgroup identification in complex datasets. A key feature of our approach is its ability to accommodate nonlinear subgroup divisions, providing a clearer understanding of dynamic drug-gene associations. Furthermore, our model effectively handles high-dimensional data through a doubly penalized approach, ensuring both interpretability and adaptability. We propose an iterative 2-stage method that combines a change point detection technique in the first stage with a smoothed local adaptive majorize-minimization algorithm for surface regression in the second stage. Performance of the proposed methods is evaluated through extensive numerical studies. Application of our method to the IWPC dataset leads to significant new findings, where 3 subgroups subject to different pharmacogenomic relationships are identified, contributing valuable insights into the complex dynamics of drug-gene associations in patients.
Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations. To capture the between-patient heterogeneity in dosing requirement, we formulate a novel change surface model as a model-based approach for multiple subgroup identification in complex datasets. A key feature of our approach is its ability to accommodate nonlinear subgroup divisions, providing a clearer understanding of dynamic drug-gene associations. Furthermore, our model effectively handles high-dimensional data through a doubly penalized approach, ensuring both interpretability and adaptability. We propose an iterative 2-stage method that combines a change point detection technique in the first stage with a smoothed local adaptive majorize-minimization algorithm for surface regression in the second stage. Performance of the proposed methods is evaluated through extensive numerical studies. Application of our method to the IWPC dataset leads to significant new findings, where 3 subgroups subject to different pharmacogenomic relationships are identified, contributing valuable insights into the complex dynamics of drug-gene associations in patients.Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the impact of genetic variations on inter-individual outcome variability. Despite its promise, the intricate landscape of drug metabolism introduces complexity, where the correlation between drug response and genes can be shaped by numerous nongenetic factors, often exhibiting heterogeneity across diverse subpopulations. This challenge is particularly pronounced in datasets such as the International Warfarin Pharmacogenetic Consortium (IWPC), which encompasses diverse patient information from multiple nations. To capture the between-patient heterogeneity in dosing requirement, we formulate a novel change surface model as a model-based approach for multiple subgroup identification in complex datasets. A key feature of our approach is its ability to accommodate nonlinear subgroup divisions, providing a clearer understanding of dynamic drug-gene associations. Furthermore, our model effectively handles high-dimensional data through a doubly penalized approach, ensuring both interpretability and adaptability. We propose an iterative 2-stage method that combines a change point detection technique in the first stage with a smoothed local adaptive majorize-minimization algorithm for surface regression in the second stage. Performance of the proposed methods is evaluated through extensive numerical studies. Application of our method to the IWPC dataset leads to significant new findings, where 3 subgroups subject to different pharmacogenomic relationships are identified, contributing valuable insights into the complex dynamics of drug-gene associations in patients.
Author Li, Yaguang
Li, Jialiang
Liu, Pan
Author_xml – sequence: 1
  givenname: Pan
  surname: Liu
  fullname: Liu, Pan
– sequence: 2
  givenname: Yaguang
  surname: Li
  fullname: Li, Yaguang
– sequence: 3
  givenname: Jialiang
  orcidid: 0000-0002-9704-4135
  surname: Li
  fullname: Li, Jialiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39817854$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LAzEQxYNUtFavHiVHL1uTTbLbHKX4BYIXBW9Lkp1tU3aTNclS_O_d2upB8DTM8Htv4L0zNHHeAUKXlMwpkexGW98lczNsFNBCHqEpFZxmhOdkgqaEkCJjnL6forMYN-MqBclP0CmTC1ouBJ-isFwrtwIch9AoAzjAKkCM1jvc-IDHb611oMII6FXwQ49tDS7ZxhqVdtTWpjVWfd_-HJLHWzWaBetwv1ahU8avwPnOmohrldQ5Om5UG-HiMGfo7f7udfmYPb88PC1vnzPDmEhZKRlZlLkCUxDKC85ZrfPcCBC8KHKiuaHSEMM1y3UjJbBG1lrQmkoiSl3XbIau97598B8DxFR1NhpoW-XAD7FiVBSCEUbKEb06oIPuoK76YDsVPqufnEZgvgdM8DEGaH4RSqpdEdW-iOpQxCjgfwTGpu-AUlC2_U_2Be4fks4
CitedBy_id crossref_primary_10_1002_sim_70179
Cites_doi 10.1214/20-AOS2017
10.1080/01621459.2019.1705308
10.1002/cpt.2714
10.1002/sim.8976
10.1038/s41573-019-0024-5
10.1080/10618600.2020.1763808
10.1186/s12859-017-1863-x
10.1002/sim.7064
10.1198/106186008X319331
10.1007/s40264-018-0767-7
10.2202/1557-4679.1071
10.1001/archinte.165.10.1095
10.1080/10618600.2022.2032723
10.1093/bioinformatics/btr159
10.1214/18-AOS1757
10.1002/sim.6454
10.1111/rssb.12108
10.1038/jhg.2013.40
10.1038/s41576-022-00572-8
10.1002/sim.4289
10.1111/rssb.12216
10.1038/tpj.2012.45
10.1080/01621459.2016.1166115
10.1016/j.jaad.2008.12.039
10.1080/07350015.2020.1740712
10.1073/pnas.1507583112
10.7326/0003-4819-145-10-200611210-00007
10.1002/sim.6343
10.1016/S1471-4914(01)01986-4
10.1186/1479-7364-2-5-318
10.1002/sim.7236
10.1038/clpt.2011.355
10.1002/sim.9229
10.1111/bcp.14608
10.1080/01621459.2021.1915319
10.1093/ajcp/aqw049
10.1214/17-AOS1568
10.1038/clpt.2011.185
10.1038/73439
10.1002/sim.8214
10.1002/sim.4322
10.1056/NEJMoa0809329
10.1214/009053607000000415
10.1002/sim.7638
10.1111/j.1467-9868.2009.00718.x
10.2217/pgs.09.154
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/biomtc/ujae169
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
ExternalDocumentID 39817854
10_1093_biomtc_ujae169
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 72331005
– fundername: Fundamental Research Funds for the Central Universities
  grantid: WK2040000068
– fundername: MOE
  grantid: A-8000016-0-0
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AANLZ
AAONW
AAUAY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUYR
AFBPY
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGTJU
AHGBF
AHMBA
AIAGR
AIURR
AJBYB
AJNCP
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DXH
EAP
EBS
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
H.T
H.X
H13
HZI
HZ~
IX1
J0M
JAC
K48
KOP
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O8X
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROX
RX1
RXW
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
ACUHS
AGORE
ALIPV
CGR
CUY
CVF
ECM
EIF
GS5
NPM
7X8
ID FETCH-LOGICAL-c335t-7930872aec60146443db22c5e546620b4c19c0c4b32bf99e3f9db51d19057bdd3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001396681400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Sat Sep 27 17:10:25 EDT 2025
Mon Jul 21 05:57:27 EDT 2025
Tue Nov 18 22:36:17 EST 2025
Sat Nov 29 08:10:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords change surface
pharmacogenomics
warfarin dosing
treatment recommendation
personalized medicine
subgroup identification
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c335t-7930872aec60146443db22c5e546620b4c19c0c4b32bf99e3f9db51d19057bdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9704-4135
OpenAccessLink https://academic.oup.com/biometrics/article-pdf/81/1/ujae169/61458930/ujae169.pdf
PMID 39817854
PQID 3156530307
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3156530307
pubmed_primary_39817854
crossref_primary_10_1093_biomtc_ujae169
crossref_citationtrail_10_1093_biomtc_ujae169
PublicationCentury 2000
PublicationDate 2025-Jan-07
PublicationDateYYYYMMDD 2025-01-07
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2025
References Fan (2025030423594851000_bib8) 2017; 79
Holbrook (2025030423594851000_bib12) 2005; 165
Vamathevan (2025030423594851000_bib43) 2019; 18
Spear (2025030423594851000_bib35) 2001; 7
Lee (2025030423594851000_bib18) 2021; 49
Asiimwe (2025030423594851000_bib1) 2021; 87
Steingrimsson (2025030423594851000_bib37) 2019; 38
Motsinger (2025030423594851000_bib26) 2006; 2
Limdi (2025030423594851000_bib21) 2010; 115
Yuan (2025030423594851000_bib46) 2022; 41
Zhang (2025030423594851000_bib48) 2021; 117
Sim (2025030423594851000_bib33) 2013; 13
Pirmohamed (2025030423594851000_bib29) 2023; 24
Stack (2025030423594851000_bib36) 2016; 145
Horowitz (2025030423594851000_bib13) 2007; 35
Taylor (2025030423594851000_bib41) 2015; 112
Chen (2025030423594851000_bib2) 2015; 34
Roden (2025030423594851000_bib31) 2006; 145
Peng (2025030423594851000_bib28) 2022; 31
Sissung (2025030423594851000_bib34) 2010; 11
Su (2025030423594851000_bib38) 2008; 4
Lipkovich (2025030423594851000_bib22) 2017; 36
Johnson (2025030423594851000_bib15) 2011; 90
Lee (2025030423594851000_bib17) 2019; 42
Yuan (2025030423594851000_bib45) 2018; 37
Lee (2025030423594851000_bib19) 2016; 78
Tang (2025030423594851000_bib40) 2021; 116
Chen (2025030423594851000_bib3) 2021; 30
Huang (2025030423594851000_bib14) 2017; 36
Lipkovich (2025030423594851000_bib23) 2011; 30
Nazarian (2025030423594851000_bib27) 2009; 61
International Warfarin Pharmacogenetics Consortium (2025030423594851000_bib4) 2009; 360
Yu (2025030423594851000_bib44) 2021; 39
Loh (2025030423594851000_bib24) 2015; 34
Thompson (2025030423594851000_bib42) 2023; 113
Tan (2025030423594851000_bib39) 2019; 47
Scherf (2025030423594851000_bib32) 2000; 24
Fan (2025030423594851000_bib7) 2017; 112
Foster (2025030423594851000_bib11) 2011; 30
Fan (2025030423594851000_bib9) 2018; 46
Martin (2025030423594851000_bib25) 2012; 91
Doliner (2025030423594851000_bib6) 2019; 7
Ravikumar (2025030423594851000_bib30) 2009; 71
Zeileis (2025030423594851000_bib47) 2008; 17
Fong (2025030423594851000_bib10) 2017; 18
Lee (2025030423594851000_bib16) 2013; 58
Cosgun (2025030423594851000_bib5) 2011; 27
Li (2025030423594851000_bib20) 2021; 40
References_xml – volume: 49
  start-page: 1656
  year: 2021
  ident: 2025030423594851000_bib18
  article-title: Factor-driven two-regime regression
  publication-title: The Annals of Statistics
  doi: 10.1214/20-AOS2017
– volume: 116
  start-page: 1280
  year: 2021
  ident: 2025030423594851000_bib40
  article-title: Individualized multidirectional variable selection
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2019.1705308
– volume: 113
  start-page: 585
  year: 2023
  ident: 2025030423594851000_bib42
  article-title: Personalizing direct oral anticoagulant therapy for a diverse population: role of race, kidney function, drug interactions, and pharmacogenetics
  publication-title: Clinical Pharmacology & Therapeutics
  doi: 10.1002/cpt.2714
– volume: 40
  start-page: 3440
  year: 2021
  ident: 2025030423594851000_bib20
  article-title: Multithreshold change plane model: estimation theory and applications in subgroup identification
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.8976
– volume: 18
  start-page: 463
  year: 2019
  ident: 2025030423594851000_bib43
  article-title: Applications of machine learning in drug discovery and development
  publication-title: Nature Reviews Drug Discovery
  doi: 10.1038/s41573-019-0024-5
– volume: 30
  start-page: 43
  year: 2021
  ident: 2025030423594851000_bib3
  article-title: Identifying heterogeneous effect using latent supervised clustering with adaptive fusion
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2020.1763808
– volume: 18
  start-page: 1
  year: 2017
  ident: 2025030423594851000_bib10
  article-title: chngpt: Threshold regression model estimation and inference
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1863-x
– volume: 36
  start-page: 136
  year: 2017
  ident: 2025030423594851000_bib22
  article-title: Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7064
– volume: 17
  start-page: 492
  year: 2008
  ident: 2025030423594851000_bib47
  article-title: Model-based recursive partitioning
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186008X319331
– volume: 42
  start-page: 657
  year: 2019
  ident: 2025030423594851000_bib17
  article-title: Development of a controlled vocabulary-based adverse drug reaction signal dictionary for multicenter electronic health record-based pharmacovigilance
  publication-title: Drug Safety
  doi: 10.1007/s40264-018-0767-7
– volume: 4
  start-page: 1
  year: 2008
  ident: 2025030423594851000_bib38
  article-title: Interaction trees with censored survival data
  publication-title: The International Journal of Biostatistics
  doi: 10.2202/1557-4679.1071
– volume: 165
  start-page: 1095
  year: 2005
  ident: 2025030423594851000_bib12
  article-title: Systematic overview of warfarin and its drug and food interactions
  publication-title: Archives of Internal Medicine
  doi: 10.1001/archinte.165.10.1095
– volume: 31
  start-page: 824
  year: 2022
  ident: 2025030423594851000_bib28
  article-title: A generalized quantile tree method for subgroup identification
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2022.2032723
– volume: 27
  start-page: 1384
  year: 2011
  ident: 2025030423594851000_bib5
  article-title: High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr159
– volume: 47
  start-page: 2567
  year: 2019
  ident: 2025030423594851000_bib39
  article-title: Doubly penalized estimation in additive regression with high-dimensional data
  publication-title: The Annals of Statistics
  doi: 10.1214/18-AOS1757
– volume: 34
  start-page: 1818
  year: 2015
  ident: 2025030423594851000_bib24
  article-title: A regression tree approach to identifying subgroups with differential treatment effects
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.6454
– volume: 78
  start-page: 193
  year: 2016
  ident: 2025030423594851000_bib19
  article-title: The lasso for high dimensional regression with a possible change point
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12108
– volume: 58
  start-page: 334
  year: 2013
  ident: 2025030423594851000_bib16
  article-title: Pharmacogenetics of warfarin: challenges and opportunities
  publication-title: Journal of Human Genetics
  doi: 10.1038/jhg.2013.40
– volume: 24
  start-page: 350
  year: 2023
  ident: 2025030423594851000_bib29
  article-title: Pharmacogenomics: current status and future perspectives
  publication-title: Nature Reviews Genetics
  doi: 10.1038/s41576-022-00572-8
– volume: 30
  start-page: 2601
  year: 2011
  ident: 2025030423594851000_bib23
  article-title: Subgroup identification based on differential effect search—a recursive partitioning method for establishing response to treatment in patient subpopulations
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4289
– volume: 79
  start-page: 1565
  year: 2017
  ident: 2025030423594851000_bib8
  article-title: Concordance-assisted learning for estimating optimal individualized treatment regimes
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12216
– volume: 13
  start-page: 1
  year: 2013
  ident: 2025030423594851000_bib33
  article-title: Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects
  publication-title: The Pharmacogenomics Journal
  doi: 10.1038/tpj.2012.45
– volume: 112
  start-page: 769
  year: 2017
  ident: 2025030423594851000_bib7
  article-title: Change-plane analysis for subgroup detection and sample size calculation
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2016.1166115
– volume: 61
  start-page: 325
  year: 2009
  ident: 2025030423594851000_bib27
  article-title: Warfarin-induced skin necrosis
  publication-title: Journal of the American Academy of Dermatology
  doi: 10.1016/j.jaad.2008.12.039
– volume: 39
  start-page: 953
  year: 2021
  ident: 2025030423594851000_bib44
  article-title: Threshold regression with a threshold boundary
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1080/07350015.2020.1740712
– volume: 112
  start-page: 7629
  year: 2015
  ident: 2025030423594851000_bib41
  article-title: Statistical learning and selective inference
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1507583112
– volume: 7
  start-page: 260
  year: 2019
  ident: 2025030423594851000_bib6
  article-title: Treatments to prevent primary venous ulceration after deep venous thrombosis
  publication-title: Journal of Vascular Surgery: Venous and Lymphatic Disorders
– volume: 145
  start-page: 749
  year: 2006
  ident: 2025030423594851000_bib31
  article-title: Pharmacogenomics: challenges and opportunities
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-145-10-200611210-00007
– volume: 115
  start-page: 3827
  year: 2010
  ident: 2025030423594851000_bib21
  article-title: Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups
  publication-title: Blood, The Journal of the American Society of Hematology
– volume: 34
  start-page: 317
  year: 2015
  ident: 2025030423594851000_bib2
  article-title: A PRIM approach to predictive-signature development for patient stratification
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.6343
– volume: 7
  start-page: 201
  year: 2001
  ident: 2025030423594851000_bib35
  article-title: Clinical application of pharmacogenetics
  publication-title: Trends in Molecular Medicine
  doi: 10.1016/S1471-4914(01)01986-4
– volume: 2
  start-page: 1
  year: 2006
  ident: 2025030423594851000_bib26
  article-title: Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies
  publication-title: Human Genomics
  doi: 10.1186/1479-7364-2-5-318
– volume: 36
  start-page: 1414
  year: 2017
  ident: 2025030423594851000_bib14
  article-title: Patient subgroup identification for clinical drug development
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7236
– volume: 91
  start-page: 734
  year: 2012
  ident: 2025030423594851000_bib25
  article-title: Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B Genotype and Abacavir Dosing
  publication-title: Clinical Pharmacology & Therapeutics
  doi: 10.1038/clpt.2011.355
– volume: 41
  start-page: 180
  year: 2022
  ident: 2025030423594851000_bib46
  article-title: Set-regression with applications to subgroup analysis
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.9229
– volume: 87
  start-page: 1717
  year: 2021
  ident: 2025030423594851000_bib1
  article-title: Warfarin dosing algorithms: s systematic review
  publication-title: British Journal of Clinical Pharmacology
  doi: 10.1111/bcp.14608
– volume: 117
  start-page: 2222
  year: 2021
  ident: 2025030423594851000_bib48
  article-title: Single-index thresholding in quantile regression
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2021.1915319
– volume: 145
  start-page: 671
  year: 2016
  ident: 2025030423594851000_bib36
  article-title: Warfarin pharmacogenetics reevaluated: subgroup analysis reveals a likely underestimation of the maximum pharmacogenetic benefit by clinical trials
  publication-title: American Journal of Clinical Pathology
  doi: 10.1093/ajcp/aqw049
– volume: 46
  start-page: 814
  year: 2018
  ident: 2025030423594851000_bib9
  article-title: I-LAMM for sparse learning: simultaneous control of algorithmic complexity and statistical error
  publication-title: The Annals of Statistics
  doi: 10.1214/17-AOS1568
– volume: 90
  start-page: 625
  year: 2011
  ident: 2025030423594851000_bib15
  article-title: Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing
  publication-title: Clinical Pharmacology & Therapeutics
  doi: 10.1038/clpt.2011.185
– volume: 24
  start-page: 236
  year: 2000
  ident: 2025030423594851000_bib32
  article-title: A gene expression database for the molecular pharmacology of cancer
  publication-title: Nature Genetics
  doi: 10.1038/73439
– volume: 38
  start-page: 3974
  year: 2019
  ident: 2025030423594851000_bib37
  article-title: Subgroup identification using covariate-adjusted interaction trees
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.8214
– volume: 30
  start-page: 2867
  year: 2011
  ident: 2025030423594851000_bib11
  article-title: Subgroup identification from randomized clinical trial data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4322
– volume: 360
  start-page: 753
  year: 2009
  ident: 2025030423594851000_bib4
  article-title: Estimation of the warfarin dose with clinical and pharmacogenetic data
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa0809329
– volume: 35
  start-page: 2589
  year: 2007
  ident: 2025030423594851000_bib13
  article-title: Rate-optimal estimation for a general class of nonparametric regression models with unknown link functions
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000415
– volume: 37
  start-page: 1830
  year: 2018
  ident: 2025030423594851000_bib45
  article-title: Subgroup analysis with semiparametric models toward precision medicine
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7638
– volume: 71
  start-page: 1009
  year: 2009
  ident: 2025030423594851000_bib30
  article-title: Sparse additive models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2009.00718.x
– volume: 11
  start-page: 89
  year: 2010
  ident: 2025030423594851000_bib34
  article-title: Clinical pharmacology and pharmacogenetics in a genomics era: the DMET platform
  publication-title: Pharmacogenomics
  doi: 10.2217/pgs.09.154
SSID ssj0009502
Score 2.4457445
Snippet Pharmacogenomics stands as a pivotal driver toward personalized medicine, aiming to optimize drug efficacy while minimizing adverse effects by uncovering the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
SubjectTerms Algorithms
Anticoagulants - administration & dosage
Computer Simulation
Humans
Models, Statistical
Nonlinear Dynamics
Pharmacogenetics - methods
Pharmacogenetics - statistics & numerical data
Precision Medicine
Regression Analysis
Warfarin - administration & dosage
Warfarin - pharmacokinetics
Title Change surface regression for nonlinear subgroup identification with application to warfarin pharmacogenomics data
URI https://www.ncbi.nlm.nih.gov/pubmed/39817854
https://www.proquest.com/docview/3156530307
Volume 81
WOSCitedRecordID wos001396681400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbYBtJ4QFAYlB-TkRA8TNES_0jiRwSrEBoFoU4qT5HtOFURdCVtYPz3nHNu2gKTxgMvUWW5TtTv6-Xsu_uOkGexMiKX1kaJNc6HGWWktcyitI1qxcxmyrTNJrLhMB-P1YdQQrBo2wlks1l-caHm_xVqGAOwfensP8DdLQoD8BlAhyvADtcrAY_1AkeLpq609U1RJpjqihmFM5TG0DVMMG1Jx9G0DBlDyAWsdlvHtb13-kPDYrVPOA9K117a9asXeA61bevAsC_n96r_na9-Om3QVV0n_7QZBJ_0pNHhvdkNvp225y6TzcMIJtvDiGzTfgoYEAxDLe4vY8HoYp-WTXL9YctR58qrEPhm74Pms3YJtnXZls0evi8GZ6enxehkPHo-_xb5jmI-8h7aq-yQPZZJBRZv7_VHmLghyYwZqavH6yQ9-THe9DjccttluWQf0vojo9vkVthI0JdIgDvkmpv1yA1sLfqzR26-6_R4Fz2y7_cUKMl9l9TIEBoYQtcMocAQ2jGErhhCtxlCPUPoBkPo8pyuGEJ_Zwj1DLlHzgYno1dvotB6I7Kcy2UEVjvOM6adTb26kBC8NIxZ6aRIUxYbYRNlYysMZ6ZSyvFKlUYmJbiXMjNlyQ_ILjyue0BoxaTlQlR5mlRCpSI3LpawS3ZO55VgSZ9Eq1-3sEGX3rdH-VJgfgQvEI0ioNEnL7r5c1RkuXTm0xVYBRhNHwnTM3feLAqewD6G-_dbn9xHFLu1uMqTLJfi4RW-_Yjsr_8Fj8nusm7cE3LdfgdI60Oyk43zw0C7XymgoOk
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+surface+regression+for+nonlinear+subgroup+identification+with+application+to+warfarin+pharmacogenomics+data&rft.jtitle=Biometrics&rft.au=Liu%2C+Pan&rft.au=Li%2C+Yaguang&rft.au=Li%2C+Jialiang&rft.date=2025-01-07&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=81&rft.issue=1&rft_id=info:doi/10.1093%2Fbiomtc%2Fujae169&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon