New square-root smoothing algorithms
This paper presents new square-root smoothing algorithms for the three best-known smoothing formulas: (1) Rauch-Tung-Striebel (RTS) formulas, (2) Desai-Weinert-Yusypchuk (DWY) formulas, called backward RTS formulas, and (3) Mayne-Fraser (MF) formulas, called two-filter formulas. The main feature of...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 41; číslo 5; s. 727 - 732 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.05.1996
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0018-9286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents new square-root smoothing algorithms for the three best-known smoothing formulas: (1) Rauch-Tung-Striebel (RTS) formulas, (2) Desai-Weinert-Yusypchuk (DWY) formulas, called backward RTS formulas, and (3) Mayne-Fraser (MF) formulas, called two-filter formulas. The main feature of the new algorithms is that they use unitary rotations to replace all matrix inversion and backsubstitution steps common in earlier algorithms with unitary operations; this feature enables more efficient systolic array and parallel implementations and leads to algorithms with better numerical stability and conditioning properties. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-9286 |
| DOI: | 10.1109/9.489212 |