Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail

It is of great practical significance to save train traction energy for reducing the operation cost of urban rail transit. The energy-efficient train scheduling without combining with train circulation planning may inadvertently increase the other cost of rolling stocks, and finally lead to an incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) Jg. 263; S. 125599
Hauptverfasser: Zhou, Wenliang, Huang, Yu, Deng, Lianbo, Qin, Jin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2023
Schlagworte:
ISSN:0360-5442
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract It is of great practical significance to save train traction energy for reducing the operation cost of urban rail transit. The energy-efficient train scheduling without combining with train circulation planning may inadvertently increase the other cost of rolling stocks, and finally lead to an increment of the total operation cost. This paper studies the integrated problem of energy-efficient train scheduling and train circulation planning for urban rail, and aims to reduce the total operation cost of rolling stocks including energy consumption. Its main challenge is to simultaneously solve three subproblems, namely the saving of train's traction energy in each rail section, the utilizing of regenerative braking energy and the optimizing of train circulation plan. We construct an optimization model to simultaneously optimize schedule and train circulation plan. Based on the designing of a strategy to create the train circulation plan for each train schedule, an efficient particle swarm algorithm is formed to solve our proposed model. The numerical experiments based on Guangzhou Metro Line 9 of China illustrate that the collaborative optimization can reduce the total operation cost of trains by 4.48% compared with the initial train schedule. •Integrate train circulation planning with energy-efficient train scheduling.•Optimize trains' traction strategies to reduce traction energy consumption.•Regenerative braking energy can be utilized in the same substation to save energy.•The effectiveness is demonstrated in a real-word case.
AbstractList It is of great practical significance to save train traction energy for reducing the operation cost of urban rail transit. The energy-efficient train scheduling without combining with train circulation planning may inadvertently increase the other cost of rolling stocks, and finally lead to an increment of the total operation cost. This paper studies the integrated problem of energy-efficient train scheduling and train circulation planning for urban rail, and aims to reduce the total operation cost of rolling stocks including energy consumption. Its main challenge is to simultaneously solve three subproblems, namely the saving of train's traction energy in each rail section, the utilizing of regenerative braking energy and the optimizing of train circulation plan. We construct an optimization model to simultaneously optimize schedule and train circulation plan. Based on the designing of a strategy to create the train circulation plan for each train schedule, an efficient particle swarm algorithm is formed to solve our proposed model. The numerical experiments based on Guangzhou Metro Line 9 of China illustrate that the collaborative optimization can reduce the total operation cost of trains by 4.48% compared with the initial train schedule.
It is of great practical significance to save train traction energy for reducing the operation cost of urban rail transit. The energy-efficient train scheduling without combining with train circulation planning may inadvertently increase the other cost of rolling stocks, and finally lead to an increment of the total operation cost. This paper studies the integrated problem of energy-efficient train scheduling and train circulation planning for urban rail, and aims to reduce the total operation cost of rolling stocks including energy consumption. Its main challenge is to simultaneously solve three subproblems, namely the saving of train's traction energy in each rail section, the utilizing of regenerative braking energy and the optimizing of train circulation plan. We construct an optimization model to simultaneously optimize schedule and train circulation plan. Based on the designing of a strategy to create the train circulation plan for each train schedule, an efficient particle swarm algorithm is formed to solve our proposed model. The numerical experiments based on Guangzhou Metro Line 9 of China illustrate that the collaborative optimization can reduce the total operation cost of trains by 4.48% compared with the initial train schedule. •Integrate train circulation planning with energy-efficient train scheduling.•Optimize trains' traction strategies to reduce traction energy consumption.•Regenerative braking energy can be utilized in the same substation to save energy.•The effectiveness is demonstrated in a real-word case.
ArticleNumber 125599
Author Qin, Jin
Zhou, Wenliang
Huang, Yu
Deng, Lianbo
Author_xml – sequence: 1
  givenname: Wenliang
  surname: Zhou
  fullname: Zhou, Wenliang
– sequence: 2
  givenname: Yu
  surname: Huang
  fullname: Huang, Yu
– sequence: 3
  givenname: Lianbo
  surname: Deng
  fullname: Deng, Lianbo
  email: lbdeng@csu.edu.cn
– sequence: 4
  givenname: Jin
  orcidid: 0000-0002-1864-6489
  surname: Qin
  fullname: Qin, Jin
BookMark eNqFkD1PwzAURT0UCSj8A4aMLCn-qJOYAQlVfEmVWGC2nJdncJXaxU4qlV9PQpgYYLL9_M6V7jklMx88EnLB6IJRVlxtFugxvh0WnHK-YFxKpWbkhIqC5nK55MfkNKUNpVRWSp2Qt1VoW1OHaDq3xyzsOrd1n8Mj-CzYbMrK0VoHDn2XddE4nyV4x6ZvMTO--RmBi9C3E7hrjc9siFkf6-E2_Ldn5MiaNuH5zzknr_d3L6vHfP388LS6XecghOxyIaAGXle2VCUsJXKmKimNoEI1rKaqbGpbSlaBUqYA4EYYYzmwxipaV0KIObmccncxfPSYOr11CXDo6DH0SfOqKgtaFsW4upxWIYaUIlq9i25r4kEzqkeXeqOn_np0qSeXA3b9CwPXffceRbT_wTcTjIODvcOo0-gVsHERodNNcH8HfAE3QZjF
CitedBy_id crossref_primary_10_1088_2631_8695_ad6834
crossref_primary_10_1007_s00500_024_10364_3
crossref_primary_10_1080_0305215X_2024_2385583
crossref_primary_10_1109_TITS_2025_3525538
crossref_primary_10_1016_j_jrtpm_2023_100392
crossref_primary_10_1016_j_sftr_2025_101084
crossref_primary_10_3390_en16031268
crossref_primary_10_3390_math13132119
crossref_primary_10_1016_j_energy_2023_127475
crossref_primary_10_1155_atr_6689351
crossref_primary_10_1007_s10489_025_06542_x
crossref_primary_10_1002_ese3_1971
crossref_primary_10_1016_j_energy_2023_127295
crossref_primary_10_1016_j_trc_2024_104993
crossref_primary_10_1016_j_tre_2023_103212
crossref_primary_10_1038_s41598_025_91891_3
crossref_primary_10_1109_TITS_2025_3545480
crossref_primary_10_1016_j_trc_2024_104756
crossref_primary_10_1109_ACCESS_2024_3358585
crossref_primary_10_1016_j_apm_2023_12_002
crossref_primary_10_1016_j_swevo_2025_102027
crossref_primary_10_1177_03611981231167428
crossref_primary_10_3390_en18020280
crossref_primary_10_1016_j_energy_2023_127617
Cites_doi 10.3390/en11051248
10.1002/atr.1317
10.1016/j.trb.2014.03.006
10.1016/j.jclepro.2019.01.023
10.1155/2019/7258986
10.1016/j.tre.2020.102007
10.3390/en9080626
10.1016/j.energy.2018.03.111
10.1016/j.trc.2020.01.008
10.1016/j.cie.2018.09.041
10.1016/j.trc.2020.102852
10.1016/j.trc.2020.102822
10.1016/j.energy.2020.118127
10.1109/TITS.2012.2219620
10.1049/iet-epa:20070381
10.1109/TITS.2018.2789910
10.1016/j.isatra.2019.08.024
10.1109/TITS.2013.2244885
10.1016/j.energy.2017.07.117
10.3390/en9020105
10.1016/j.trb.2020.01.001
10.1016/j.tre.2016.10.012
10.1016/0967-0661(94)90198-8
10.1155/2013/805410
10.1016/j.tre.2021.102323
10.1016/j.ejor.2021.05.053
10.1016/j.tra.2003.07.001
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2022.125599
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2022_125599
S0360544222024859
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c335t-33cbc2b8f797c45e219855a3039d1b097dbf7518c99a6cc2a3aaf2c1df90b8333
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868319200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sat Sep 27 23:04:06 EDT 2025
Sat Nov 29 06:35:16 EST 2025
Tue Nov 18 20:41:42 EST 2025
Sat Nov 16 15:58:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Train circulation planning
Urban rail transit
Particle swarm algorithm
Train tracking strategy
Regenerative braking energy
Energy-efficient train scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c335t-33cbc2b8f797c45e219855a3039d1b097dbf7518c99a6cc2a3aaf2c1df90b8333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1864-6489
PQID 2887607663
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2887607663
crossref_primary_10_1016_j_energy_2022_125599
crossref_citationtrail_10_1016_j_energy_2022_125599
elsevier_sciencedirect_doi_10_1016_j_energy_2022_125599
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Golovitcher (bib12) 2003; 37
Bu, Qin, Li, Li (bib34) 2018; 11
Xu, Jia, Li, Li, Ghiasi (bib17) 2020; 112
Wang, Tang, Su, Yin, Gao, Lv (bib27) 2021; 150
Xu, Li, Li (bib15) 2016; 50
Yang, Liao, Wu, Timmermans, Sun, Gao (bib22) 2020; 133
Açıkbaş, Söylemez (bib11) 2008; 2
Zhou, Bai, Li, Mao, Li (bib25) 2018
Liu, Yang, Gao, Huang, Li, Gao (bib18) 2018; 19
Huang, Yang, Tang, Gao, Cao (bib32) 2017; 138
Huang, Wu, Yang, Gao, Liu, Zhu (bib13) 2019
Eberhart, Shi (bib36) 2000, July; vol. 1
Lai, Liu, Haghani, Meng, Wang (bib2) 2020; 141
Yin, Su, Xun, Tang, Liu (bib14) 2020; 98
Sun, Cai, Hou, Zhang, Dong (bib19) 2014
Nasri, Moghadam, Mokhtari (bib23) 2010, June
Kang, Sun, Wu, Gao (bib31) 2020; 206
Tuyttens, Fei, Mezmaz, Jalwan (bib8) 2013
Yang, Li, Gao, Wang, Tang (bib4) 2012; 14
Su, Li, Tang, Gao (bib9) 2013; 14
Yang, Chen, Ning, Tang (bib6) 2017; 97
Liu, Schmidt, Kong, Wagenaar, Yang, Gao, Zhou (bib30) 2020; 121
Huang, Yu, Yin, Hu, Bai, Meng, Wang (bib28) 2018; 126
Scheepmaker, Goverde (bib26) 2020; 121
Howlett, Milroy, Pudney (bib10) 1994; 2
Liebchen, Möhring (bib33) 2007
Kennedy, Eberhart (bib35) 1995, November; vol. 4
Huang, Yang, Gong (bib16) 2016; 9
Zhao, Li, Su (bib21) 2014; vol. I
Ning, Zhou, Long, Tao (bib24) 2018; 151
Wang, D'Ariano, Zhao, Zhong, Peng (bib5) 2022; 298
Li, Lo (bib29) 2014; 64
Su, Tang, Wang (bib1) 2016; 9
Peña-Alcaraz, Fernández, Cucala, Ramos, Pecharromán (bib20) 2012; vol. 226
Zhang, Jia, Wang, Xu (bib3) 2019; 214
Bu (10.1016/j.energy.2022.125599_bib34) 2018; 11
Kennedy (10.1016/j.energy.2022.125599_bib35) 1995; vol. 4
Wang (10.1016/j.energy.2022.125599_bib5) 2022; 298
Peña-Alcaraz (10.1016/j.energy.2022.125599_bib20) 2012; vol. 226
Wang (10.1016/j.energy.2022.125599_bib27) 2021; 150
Scheepmaker (10.1016/j.energy.2022.125599_bib26) 2020; 121
Yang (10.1016/j.energy.2022.125599_bib4) 2012; 14
Kang (10.1016/j.energy.2022.125599_bib31) 2020; 206
Howlett (10.1016/j.energy.2022.125599_bib10) 1994; 2
Su (10.1016/j.energy.2022.125599_bib1) 2016; 9
Xu (10.1016/j.energy.2022.125599_bib17) 2020; 112
Tuyttens (10.1016/j.energy.2022.125599_bib8) 2013
Huang (10.1016/j.energy.2022.125599_bib28) 2018; 126
Sun (10.1016/j.energy.2022.125599_bib19) 2014
Yin (10.1016/j.energy.2022.125599_bib14) 2020; 98
Huang (10.1016/j.energy.2022.125599_bib16) 2016; 9
Yang (10.1016/j.energy.2022.125599_bib6) 2017; 97
Su (10.1016/j.energy.2022.125599_bib9) 2013; 14
Huang (10.1016/j.energy.2022.125599_bib13) 2019
Zhang (10.1016/j.energy.2022.125599_bib3) 2019; 214
Zhao (10.1016/j.energy.2022.125599_bib21) 2014; vol. I
Yang (10.1016/j.energy.2022.125599_bib22) 2020; 133
Liu (10.1016/j.energy.2022.125599_bib30) 2020; 121
Huang (10.1016/j.energy.2022.125599_bib32) 2017; 138
Li (10.1016/j.energy.2022.125599_bib29) 2014; 64
Eberhart (10.1016/j.energy.2022.125599_bib36) 2000; vol. 1
Liebchen (10.1016/j.energy.2022.125599_bib33) 2007
Ning (10.1016/j.energy.2022.125599_bib24) 2018; 151
Açıkbaş (10.1016/j.energy.2022.125599_bib11) 2008; 2
Liu (10.1016/j.energy.2022.125599_bib18) 2018; 19
Zhou (10.1016/j.energy.2022.125599_bib25) 2018
Nasri (10.1016/j.energy.2022.125599_bib23) 2010
Lai (10.1016/j.energy.2022.125599_bib2) 2020; 141
Liu (10.1016/j.energy.2022.125599_bib12) 2003; 37
Xu (10.1016/j.energy.2022.125599_bib15) 2016; 50
References_xml – volume: 50
  start-page: 69
  year: 2016
  end-page: 95
  ident: bib15
  article-title: A multi-objective subway timetable optimization approach with minimum passenger time and energy consumption
  publication-title: J Adv Transport
– volume: 133
  start-page: 85
  year: 2020
  end-page: 113
  ident: bib22
  article-title: A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system
  publication-title: Transp Res Part B Methodol
– volume: 214
  start-page: 1024
  year: 2019
  end-page: 1037
  ident: bib3
  article-title: Energy consumption optimization of train operation for railway systems: algorithm development and real-world case study
  publication-title: J Clean Prod
– start-page: 1218
  year: 2010, June
  end-page: 1221
  ident: bib23
  article-title: Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems
  publication-title: SPEEDAM 2010
– volume: 64
  start-page: 73
  year: 2014
  end-page: 89
  ident: bib29
  article-title: An energy-efficient scheduling and speed control approach for metro rail operations
  publication-title: Transp Res Part B Methodol
– volume: 206
  year: 2020
  ident: bib31
  article-title: Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks
  publication-title: Energy
– volume: 126
  start-page: 399
  year: 2018
  end-page: 409
  ident: bib28
  article-title: An integrated approach for the energy-efficient driving strategy optimization of multiple trains by considering regenerative braking
  publication-title: Comput Ind Eng
– volume: 9
  start-page: 105
  year: 2016
  ident: bib1
  article-title: Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model
  publication-title: Energies
– year: 2019
  ident: bib13
  article-title: Discrete train speed profile optimization for urban rail transit: a data-driven model and integrated algorithms based on machine learning
  publication-title: J Adv Transport
– volume: 138
  start-page: 1124
  year: 2017
  end-page: 1147
  ident: bib32
  article-title: Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks
  publication-title: Energy
– volume: 37
  start-page: 917
  year: 2003
  end-page: 932
  ident: bib12
  article-title: Energy-efficient operation of rail vehicles
  publication-title: Transport Res Pol Pract
– volume: 150
  year: 2021
  ident: bib27
  article-title: An integrated energy-efficient train operation approach based on the space-time-speed network methodology
  publication-title: Transport Res E Logist Transport Rev
– volume: vol. 226
  start-page: 397
  year: 2012
  end-page: 408
  ident: bib20
  article-title: Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy
  publication-title: Proceedings of the institution of mechanical engineers, Part F: journal of rail and rapid transit
– volume: vol. 4
  start-page: 1942
  year: 1995, November
  end-page: 1948
  ident: bib35
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN'95-international conference on neural networks
– volume: vol. I
  start-page: 557
  year: 2014
  end-page: 565
  ident: bib21
  article-title: A multi-objective timetable optimization model for subway systems
  publication-title: Proceedings of the 2013 international conference on electrical and information technologies for rail transportation (EITRT2013)
– volume: 19
  start-page: 3947
  year: 2018
  end-page: 3963
  ident: bib18
  article-title: Energy-efficient train timetable optimization in the subway system with energy storage devices
  publication-title: IEEE Trans Intell Transport Syst
– year: 2018
  ident: bib25
  article-title: Integrated optimization on train control and timetable to minimize net energy consumption of metro lines
  publication-title: J Adv Transport
– volume: 121
  year: 2020
  ident: bib30
  article-title: A robust and energy-efficient train timetable for the subway system
  publication-title: Transport Res C Emerg Technol
– volume: 2
  start-page: 193
  year: 1994
  end-page: 200
  ident: bib10
  article-title: Energy-efficient train control
  publication-title: Control Eng Pract
– volume: 9
  start-page: 626
  year: 2016
  ident: bib16
  article-title: Energy optimization for train operation based on an improved ant colony optimization methodology
  publication-title: Energies
– start-page: 3
  year: 2007
  end-page: 40
  ident: bib33
  article-title: The modeling power of the periodic event scheduling problem: railway timetables—and beyond
  publication-title: Algorithmic methods for railway optimization
– volume: 141
  year: 2020
  ident: bib2
  article-title: Energy-efficient speed profile optimization for medium-speed maglev trains
  publication-title: Transport Res E Logist Transport Rev
– volume: 121
  year: 2020
  ident: bib26
  article-title: Energy-efficient train control using nonlinear bounded regenerative braking
  publication-title: Transport Res C Emerg Technol
– volume: 14
  start-page: 438
  year: 2012
  end-page: 447
  ident: bib4
  article-title: A cooperative scheduling model for timetable optimization in subway systems
  publication-title: IEEE Trans Intell Transport Syst
– volume: vol. 1
  start-page: 84
  year: 2000, July
  end-page: 88
  ident: bib36
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512)
– year: 2013
  ident: bib8
  article-title: Simulation-based genetic algorithm towards an energy-efficient railway traffic control
  publication-title: Math Probl Eng
– start-page: 139
  year: 2014
  end-page: 144
  ident: bib19
  article-title: Regenerative braking energy utilization by multi train cooperation
  publication-title: 17th international IEEE conference on intelligent transportation systems (ITSC)
– volume: 14
  start-page: 883
  year: 2013
  end-page: 893
  ident: bib9
  article-title: A subway train timetable optimization approach based on energy-efficient operation strategy
  publication-title: IEEE Trans Intell Transport Syst
– volume: 98
  start-page: 349
  year: 2020
  end-page: 363
  ident: bib14
  article-title: Data-driven approaches for modeling train control models: comparison and case studies
  publication-title: ISA Trans
– volume: 298
  start-page: 526
  year: 2022
  end-page: 559
  ident: bib5
  article-title: Integrated rolling stock deadhead routing and timetabling in urban rail transit lines
  publication-title: Eur J Oper Res
– volume: 2
  start-page: 172
  year: 2008
  end-page: 182
  ident: bib11
  article-title: Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms
  publication-title: IET Electr Power Appl
– volume: 11
  start-page: 1248
  year: 2018
  ident: bib34
  article-title: An energy efficient train dispatch and control integrated method in urban rail transit
  publication-title: Energies
– volume: 97
  start-page: 22
  year: 2017
  end-page: 37
  ident: bib6
  article-title: Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty
  publication-title: Transport Res E Logist Transport Rev
– volume: 151
  start-page: 854
  year: 2018
  end-page: 863
  ident: bib24
  article-title: A synergistic energy-efficient planning approach for urban rail transit operations
  publication-title: Energy
– volume: 112
  start-page: 88
  year: 2020
  end-page: 115
  ident: bib17
  article-title: An integrated micro-macro approach for high-speed railway energy-efficient timetabling problem
  publication-title: Transport Res C Emerg Technol
– volume: 11
  start-page: 1248
  issue: 5
  year: 2018
  ident: 10.1016/j.energy.2022.125599_bib34
  article-title: An energy efficient train dispatch and control integrated method in urban rail transit
  publication-title: Energies
  doi: 10.3390/en11051248
– volume: vol. 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.energy.2022.125599_bib35
  article-title: Particle swarm optimization
– volume: 50
  start-page: 69
  issue: 1
  year: 2016
  ident: 10.1016/j.energy.2022.125599_bib15
  article-title: A multi-objective subway timetable optimization approach with minimum passenger time and energy consumption
  publication-title: J Adv Transport
  doi: 10.1002/atr.1317
– year: 2018
  ident: 10.1016/j.energy.2022.125599_bib25
  article-title: Integrated optimization on train control and timetable to minimize net energy consumption of metro lines
  publication-title: J Adv Transport
– volume: 64
  start-page: 73
  year: 2014
  ident: 10.1016/j.energy.2022.125599_bib29
  article-title: An energy-efficient scheduling and speed control approach for metro rail operations
  publication-title: Transp Res Part B Methodol
  doi: 10.1016/j.trb.2014.03.006
– volume: 214
  start-page: 1024
  year: 2019
  ident: 10.1016/j.energy.2022.125599_bib3
  article-title: Energy consumption optimization of train operation for railway systems: algorithm development and real-world case study
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.01.023
– year: 2019
  ident: 10.1016/j.energy.2022.125599_bib13
  article-title: Discrete train speed profile optimization for urban rail transit: a data-driven model and integrated algorithms based on machine learning
  publication-title: J Adv Transport
  doi: 10.1155/2019/7258986
– volume: 141
  year: 2020
  ident: 10.1016/j.energy.2022.125599_bib2
  article-title: Energy-efficient speed profile optimization for medium-speed maglev trains
  publication-title: Transport Res E Logist Transport Rev
  doi: 10.1016/j.tre.2020.102007
– volume: 9
  start-page: 626
  issue: 8
  year: 2016
  ident: 10.1016/j.energy.2022.125599_bib16
  article-title: Energy optimization for train operation based on an improved ant colony optimization methodology
  publication-title: Energies
  doi: 10.3390/en9080626
– volume: 151
  start-page: 854
  year: 2018
  ident: 10.1016/j.energy.2022.125599_bib24
  article-title: A synergistic energy-efficient planning approach for urban rail transit operations
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.111
– volume: 112
  start-page: 88
  year: 2020
  ident: 10.1016/j.energy.2022.125599_bib17
  article-title: An integrated micro-macro approach for high-speed railway energy-efficient timetabling problem
  publication-title: Transport Res C Emerg Technol
  doi: 10.1016/j.trc.2020.01.008
– volume: 126
  start-page: 399
  year: 2018
  ident: 10.1016/j.energy.2022.125599_bib28
  article-title: An integrated approach for the energy-efficient driving strategy optimization of multiple trains by considering regenerative braking
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.09.041
– volume: vol. 1
  start-page: 84
  year: 2000
  ident: 10.1016/j.energy.2022.125599_bib36
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
– volume: 121
  year: 2020
  ident: 10.1016/j.energy.2022.125599_bib26
  article-title: Energy-efficient train control using nonlinear bounded regenerative braking
  publication-title: Transport Res C Emerg Technol
  doi: 10.1016/j.trc.2020.102852
– volume: 121
  year: 2020
  ident: 10.1016/j.energy.2022.125599_bib30
  article-title: A robust and energy-efficient train timetable for the subway system
  publication-title: Transport Res C Emerg Technol
  doi: 10.1016/j.trc.2020.102822
– volume: 206
  year: 2020
  ident: 10.1016/j.energy.2022.125599_bib31
  article-title: Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118127
– volume: 14
  start-page: 438
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2022.125599_bib4
  article-title: A cooperative scheduling model for timetable optimization in subway systems
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2012.2219620
– start-page: 139
  year: 2014
  ident: 10.1016/j.energy.2022.125599_bib19
  article-title: Regenerative braking energy utilization by multi train cooperation
– start-page: 1218
  year: 2010
  ident: 10.1016/j.energy.2022.125599_bib23
  article-title: Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems
– volume: 2
  start-page: 172
  issue: 3
  year: 2008
  ident: 10.1016/j.energy.2022.125599_bib11
  article-title: Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms
  publication-title: IET Electr Power Appl
  doi: 10.1049/iet-epa:20070381
– volume: 19
  start-page: 3947
  issue: 12
  year: 2018
  ident: 10.1016/j.energy.2022.125599_bib18
  article-title: Energy-efficient train timetable optimization in the subway system with energy storage devices
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2018.2789910
– volume: 98
  start-page: 349
  year: 2020
  ident: 10.1016/j.energy.2022.125599_bib14
  article-title: Data-driven approaches for modeling train control models: comparison and case studies
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.08.024
– volume: 14
  start-page: 883
  issue: 2
  year: 2013
  ident: 10.1016/j.energy.2022.125599_bib9
  article-title: A subway train timetable optimization approach based on energy-efficient operation strategy
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2013.2244885
– volume: 138
  start-page: 1124
  year: 2017
  ident: 10.1016/j.energy.2022.125599_bib32
  article-title: Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.117
– start-page: 3
  year: 2007
  ident: 10.1016/j.energy.2022.125599_bib33
  article-title: The modeling power of the periodic event scheduling problem: railway timetables—and beyond
– volume: vol. I
  start-page: 557
  year: 2014
  ident: 10.1016/j.energy.2022.125599_bib21
  article-title: A multi-objective timetable optimization model for subway systems
– volume: 9
  start-page: 105
  year: 2016
  ident: 10.1016/j.energy.2022.125599_bib1
  article-title: Evaluation of strategies to reducing traction energy consumption of metro systems using an optimal train control simulation model
  publication-title: Energies
  doi: 10.3390/en9020105
– volume: 133
  start-page: 85
  year: 2020
  ident: 10.1016/j.energy.2022.125599_bib22
  article-title: A bi-objective timetable optimization model incorporating energy allocation and passenger assignment in an energy-regenerative metro system
  publication-title: Transp Res Part B Methodol
  doi: 10.1016/j.trb.2020.01.001
– volume: 97
  start-page: 22
  year: 2017
  ident: 10.1016/j.energy.2022.125599_bib6
  article-title: Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty
  publication-title: Transport Res E Logist Transport Rev
  doi: 10.1016/j.tre.2016.10.012
– volume: 2
  start-page: 193
  issue: 2
  year: 1994
  ident: 10.1016/j.energy.2022.125599_bib10
  article-title: Energy-efficient train control
  publication-title: Control Eng Pract
  doi: 10.1016/0967-0661(94)90198-8
– volume: vol. 226
  start-page: 397
  year: 2012
  ident: 10.1016/j.energy.2022.125599_bib20
  article-title: Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy
– year: 2013
  ident: 10.1016/j.energy.2022.125599_bib8
  article-title: Simulation-based genetic algorithm towards an energy-efficient railway traffic control
  publication-title: Math Probl Eng
  doi: 10.1155/2013/805410
– volume: 150
  year: 2021
  ident: 10.1016/j.energy.2022.125599_bib27
  article-title: An integrated energy-efficient train operation approach based on the space-time-speed network methodology
  publication-title: Transport Res E Logist Transport Rev
  doi: 10.1016/j.tre.2021.102323
– volume: 298
  start-page: 526
  issue: 2
  year: 2022
  ident: 10.1016/j.energy.2022.125599_bib5
  article-title: Integrated rolling stock deadhead routing and timetabling in urban rail transit lines
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.05.053
– volume: 37
  start-page: 917
  issue: 10
  year: 2003
  ident: 10.1016/j.energy.2022.125599_bib12
  article-title: Energy-efficient operation of rail vehicles
  publication-title: Transport Res Pol Pract
  doi: 10.1016/j.tra.2003.07.001
SSID ssj0005899
Score 2.518796
Snippet It is of great practical significance to save train traction energy for reducing the operation cost of urban rail transit. The energy-efficient train...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125599
SubjectTerms algorithms
China
energy efficiency
Energy-efficient train scheduling
operating costs
Particle swarm algorithm
rail transportation
Regenerative braking energy
Train circulation planning
Train tracking strategy
Urban rail transit
Title Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail
URI https://dx.doi.org/10.1016/j.energy.2022.125599
https://www.proquest.com/docview/2887607663
Volume 263
WOSCitedRecordID wos000868319200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKhwQvCAYTY4CMxNvkKbGTJn6cpiJA08TDQIWXyHYc2NQlU9tU5b_f-Stpy8fYAy9RdHIsy_fL3fl8Hwi9ZWWsqRAlKUeqJAlTgnDFY5IbjaOqhFbWNfDlNDs7yycT_mkw-BlyYZbTrK7z1Ypf_1dWAw2YbVJn78DublIgwDswHZ7Adnj-E-NPes4u9WEDIuHK51oaw1DbXD-ibeUIEwdge0QcwhkXdM7U3SU4krqYKd_by_SadgGJ7UzC2ywEZgSXvksgNJVLVy5YvnMvfPvRtDaOz3hNhFeTFkbeUf217Wxp7SinME42nUfWtwvzFcK9g4KyNQdFSMyKSJokG0KXerHmxGZsC5_9VqI758LlkdseONBTetQP3yygvaXYunDDEMl2WbhZCjNL4Wa5h3ZolvJ8iHaOP4wnH_v4oNw2H-1WH_IubXDgr6v5k12zpeGt2XL-GD3y5w187HDyBA10vYsehHT0-S7aG_epjjDQy_r5U_R9A0h4HUi4qfA2kLBFDQ5AwgAkT1oDEjZAwgARbIGEDZCeoc_vxucn74lvy0EUY-mCMKakojKvMp6pJNWg8_I0FWAL8TKWEc9KWZnLPMW5MFH5gglRURWXFY9kzhjbQ8O6qfVzhJkEfaJNxSGVJSJmMsnBfB1Flao0kyXfRyxsaqF8zXqz9GnxN5buI9J9de1qttwyPgv8Krzd6ezJAkB4y5dvAnsLEMvmrk3UumnnBQXlPYoysOdf3HE1B-hh_xe9RMPFrNWv0H21XFzMZ689Sm8A53G1IA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+optimization+of+energy-efficient+train+schedule+and+train+circulation+plan+for+urban+rail&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhou%2C+Wenliang&rft.au=Huang%2C+Yu&rft.au=Deng%2C+Lianbo&rft.au=Qin%2C+Jin&rft.date=2023-01-01&rft.issn=0360-5442&rft.volume=263&rft.spage=125599&rft_id=info:doi/10.1016%2Fj.energy.2022.125599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2022_125599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon