Polynomial time recognition of vertices contained in all (or no) maximum dissociation sets of a tree
In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum cardinality in a graph is NP-hard even for bipartite graphs and is called the maximum dissociation set problem. The complexity of the maximum diss...
Saved in:
| Published in: | AIMS mathematics Vol. 7; no. 1; pp. 569 - 578 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2022
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum cardinality in a graph is NP-hard even for bipartite graphs and is called the maximum dissociation set problem. The complexity of the maximum dissociation set problem in various sub-classes of graphs has been extensively studied in the literature. In this paper, we study the maximum dissociation problem from different perspectives and characterize the vertices belonging to all maximum dissociation sets, and no maximum dissociation set of a tree. We present a linear time recognition algorithm which can determine whether a given vertex in a tree is contained in all (or no) maximum dissociation sets of the tree. Thus for a tree with $ n $ vertices, we can find all vertices belonging to all (or no) maximum dissociation sets of the tree in $ O(n^2) $ time. |
|---|---|
| AbstractList | In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum cardinality in a graph is NP-hard even for bipartite graphs and is called the maximum dissociation set problem. The complexity of the maximum dissociation set problem in various sub-classes of graphs has been extensively studied in the literature. In this paper, we study the maximum dissociation problem from different perspectives and characterize the vertices belonging to all maximum dissociation sets, and no maximum dissociation set of a tree. We present a linear time recognition algorithm which can determine whether a given vertex in a tree is contained in all (or no) maximum dissociation sets of the tree. Thus for a tree with $ n $ vertices, we can find all vertices belonging to all (or no) maximum dissociation sets of the tree in $ O(n^2) $ time. |
| Author | Tu, Jianhua Lang, Rongling Zhang, Lei Du, Junfeng |
| Author_xml | – sequence: 1 givenname: Jianhua surname: Tu fullname: Tu, Jianhua – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 3 givenname: Junfeng surname: Du fullname: Du, Junfeng – sequence: 4 givenname: Rongling surname: Lang fullname: Lang, Rongling |
| BookMark | eNpNkE1LAzEURYNUsNbu_AFZKjg1k6QzyVKKH4WCLnQd8llTZhJJoth_70wt4tu8x4V74J1zMAkxWAAua7QgnNDbXpb3BUYYI9KcgCmmLakaztjk330G5jnvEEK4xhS3dArMS-z2IfZedrD43sJkddwGX3wMMDr4ZVPx2maoYyjSB2ugD1B2HbyKCYZ4DXv57fvPHhqfc9ReHprZljzWJSzJ2gtw6mSX7fy4Z-Dt4f519VRtnh_Xq7tNpQlZlgob2hDuXGMNbxRlDGGjeMOpahWlNaMSKaUlp5ISXVOiZK04N6hmirVqYMzA-pdrotyJj-R7mfYiSi8OQUxbIcd3Ois4QY1iTmk3kJa05apReBitjGNLagbWzS9Lp5hzsu6PVyMxChejcHEUTn4AOvB2Zw |
| Cites_doi | 10.1007/s13119-011-0002-7 10.1007/978-1-84628-970-5 10.1137/0603052 10.1016/j.tcs.2011.09.009 10.1002/(SICI)1097-0118(199907)31:3<163::AID-JGT2>3.0.CO;2-T 10.1016/j.dam.2011.04.008 10.1016/j.tcs.2011.09.013 10.1016/j.ipl.2015.12.002 10.1016/j.tcs.2016.04.043 10.1137/0210022 10.1002/net 10.1016/j.dam.2020.08.020 10.1145/322307.322309 10.1002/jgt.22627 10.1007/s10107-005-0649-5 10.1016/S0012-365X(02)00447-8 10.1016/j.tcs.2007.09.013 10.1016/j.dam.2011.04.023 |
| ContentType | Journal Article |
| CorporateAuthor | Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province, XiNing 810008, China Key Laboratory of Tibetan Information Processing, Ministry of Education, XiNing 810008, China School of Electronics and Information Engineering, Beihang University, Beijing 100191, China School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China |
| CorporateAuthor_xml | – name: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China – name: Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province, XiNing 810008, China – name: Key Laboratory of Tibetan Information Processing, Ministry of Education, XiNing 810008, China – name: School of Electronics and Information Engineering, Beihang University, Beijing 100191, China – name: Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China – name: School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2022036 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 578 |
| ExternalDocumentID | oai_doaj_org_article_9306b8fbcfc145479b6b2222cbdf854d 10_3934_math_2022036 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-c335t-2d4639ff6ed96b48802db9694b7b44184a0bbca94a43c143ba1b99d018b87bc33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718878200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:03 EDT 2025 Sat Nov 29 06:04:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c335t-2d4639ff6ed96b48802db9694b7b44184a0bbca94a43c143ba1b99d018b87bc33 |
| OpenAccessLink | https://doaj.org/article/9306b8fbcfc145479b6b2222cbdf854d |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9306b8fbcfc145479b6b2222cbdf854d crossref_primary_10_3934_math_2022036 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2022 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2022036-20 key-10.3934/math.2022036-11 key-10.3934/math.2022036-10 key-10.3934/math.2022036-21 key-10.3934/math.2022036-17 key-10.3934/math.2022036-16 key-10.3934/math.2022036-19 key-10.3934/math.2022036-18 key-10.3934/math.2022036-7 key-10.3934/math.2022036-13 key-10.3934/math.2022036-8 key-10.3934/math.2022036-12 key-10.3934/math.2022036-9 key-10.3934/math.2022036-15 key-10.3934/math.2022036-14 key-10.3934/math.2022036-3 key-10.3934/math.2022036-4 key-10.3934/math.2022036-5 key-10.3934/math.2022036-6 key-10.3934/math.2022036-1 key-10.3934/math.2022036-2 |
| References_xml | – ident: key-10.3934/math.2022036-1 doi: 10.1007/s13119-011-0002-7 – ident: key-10.3934/math.2022036-5 doi: 10.1007/978-1-84628-970-5 – ident: key-10.3934/math.2022036-11 doi: 10.1137/0603052 – ident: key-10.3934/math.2022036-13 doi: 10.1016/j.tcs.2011.09.009 – ident: key-10.3934/math.2022036-15 doi: 10.1002/(SICI)1097-0118(199907)31:3<163::AID-JGT2>3.0.CO;2-T – ident: key-10.3934/math.2022036-7 doi: 10.1016/j.dam.2011.04.008 – ident: key-10.3934/math.2022036-19 doi: 10.1016/j.tcs.2011.09.013 – ident: key-10.3934/math.2022036-9 – ident: key-10.3934/math.2022036-14 doi: 10.1016/j.ipl.2015.12.002 – ident: key-10.3934/math.2022036-20 doi: 10.1016/j.tcs.2016.04.043 – ident: key-10.3934/math.2022036-21 doi: 10.1137/0210022 – ident: key-10.3934/math.2022036-3 – ident: key-10.3934/math.2022036-4 – ident: key-10.3934/math.2022036-12 doi: 10.1002/net – ident: key-10.3934/math.2022036-6 doi: 10.1016/j.dam.2020.08.020 – ident: key-10.3934/math.2022036-17 doi: 10.1145/322307.322309 – ident: key-10.3934/math.2022036-18 doi: 10.1002/jgt.22627 – ident: key-10.3934/math.2022036-8 doi: 10.1007/s10107-005-0649-5 – ident: key-10.3934/math.2022036-10 doi: 10.1016/S0012-365X(02)00447-8 – ident: key-10.3934/math.2022036-2 doi: 10.1016/j.tcs.2007.09.013 – ident: key-10.3934/math.2022036-16 doi: 10.1016/j.dam.2011.04.023 |
| SSID | ssj0002124274 |
| Score | 2.1679797 |
| Snippet | In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 569 |
| SubjectTerms | independent set maximum dissociation set polynomial time algorithm tree |
| Title | Polynomial time recognition of vertices contained in all (or no) maximum dissociation sets of a tree |
| URI | https://doaj.org/article/9306b8fbcfc145479b6b2222cbdf854d |
| Volume | 7 |
| WOSCitedRecordID | wos000718878200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8NADD6higEGxFOUl24ACYaoeRzJ3QiIiqVVB5C6Red7SJXaBLUpgoXfjp2kVZlYWDJEF-v0OWd_jh2bsWuvQERxFgc6NJ6aattApg4CF6NlhFBmPoR62EQ2HMrxWI02Rn1RTVjTHrgBrqeQ04L0YLyJqPmUghTQp8UGrJcomqwvsp6NYIpsMBpkgfFWU-meqET0kP9R7iGmxNsvH7TRqr_2Kf19tteSQf7QbOKAbbnikO0O1p1UF0fMjsrpF_06jOtoDjxfV_yUBS89r8cp41nnVHOOUb6zfFJwPZ3y23LOi_KOz_TnZLacccq8rzTBF65a0OOaU1b6mL31n1-fXoJ2MkJgkuS-CmIrkFl4nzqrUqAzGFtQqRKQAfIbKXQIYLQSWiQIWwI6AqVsGEmQGaCME9YpysKdMu5xMc1tVF4LgShDYrzwKCxEaqKTtMtuVljl700DjBwDB8I0J0zzFtMueyQg12uobXV9A5WZt8rM_1Lm2X8IOWc7tKfmO8kF61Tzpbtk2-ajmizmV_V7gtfB9_MPACzGAQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+time+recognition+of+vertices+contained+in+all+%28or+no%29+maximum+dissociation+sets+of+a+tree&rft.jtitle=AIMS+mathematics&rft.au=Jianhua+Tu&rft.au=Lei+Zhang&rft.au=Junfeng+Du&rft.au=Rongling+Lang&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=569&rft.epage=578&rft_id=info:doi/10.3934%2Fmath.2022036&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9306b8fbcfc145479b6b2222cbdf854d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |