Polynomial time recognition of vertices contained in all (or no) maximum dissociation sets of a tree

In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum cardinality in a graph is NP-hard even for bipartite graphs and is called the maximum dissociation set problem. The complexity of the maximum diss...

Full description

Saved in:
Bibliographic Details
Published in:AIMS mathematics Vol. 7; no. 1; pp. 569 - 578
Main Authors: Tu, Jianhua, Zhang, Lei, Du, Junfeng, Lang, Rongling
Format: Journal Article
Language:English
Published: AIMS Press 01.01.2022
Subjects:
ISSN:2473-6988, 2473-6988
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum cardinality in a graph is NP-hard even for bipartite graphs and is called the maximum dissociation set problem. The complexity of the maximum dissociation set problem in various sub-classes of graphs has been extensively studied in the literature. In this paper, we study the maximum dissociation problem from different perspectives and characterize the vertices belonging to all maximum dissociation sets, and no maximum dissociation set of a tree. We present a linear time recognition algorithm which can determine whether a given vertex in a tree is contained in all (or no) maximum dissociation sets of the tree. Thus for a tree with $ n $ vertices, we can find all vertices belonging to all (or no) maximum dissociation sets of the tree in $ O(n^2) $ time.
AbstractList In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum cardinality in a graph is NP-hard even for bipartite graphs and is called the maximum dissociation set problem. The complexity of the maximum dissociation set problem in various sub-classes of graphs has been extensively studied in the literature. In this paper, we study the maximum dissociation problem from different perspectives and characterize the vertices belonging to all maximum dissociation sets, and no maximum dissociation set of a tree. We present a linear time recognition algorithm which can determine whether a given vertex in a tree is contained in all (or no) maximum dissociation sets of the tree. Thus for a tree with $ n $ vertices, we can find all vertices belonging to all (or no) maximum dissociation sets of the tree in $ O(n^2) $ time.
Author Tu, Jianhua
Lang, Rongling
Zhang, Lei
Du, Junfeng
Author_xml – sequence: 1
  givenname: Jianhua
  surname: Tu
  fullname: Tu, Jianhua
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 3
  givenname: Junfeng
  surname: Du
  fullname: Du, Junfeng
– sequence: 4
  givenname: Rongling
  surname: Lang
  fullname: Lang, Rongling
BookMark eNpNkE1LAzEURYNUsNbu_AFZKjg1k6QzyVKKH4WCLnQd8llTZhJJoth_70wt4tu8x4V74J1zMAkxWAAua7QgnNDbXpb3BUYYI9KcgCmmLakaztjk330G5jnvEEK4xhS3dArMS-z2IfZedrD43sJkddwGX3wMMDr4ZVPx2maoYyjSB2ugD1B2HbyKCYZ4DXv57fvPHhqfc9ReHprZljzWJSzJ2gtw6mSX7fy4Z-Dt4f519VRtnh_Xq7tNpQlZlgob2hDuXGMNbxRlDGGjeMOpahWlNaMSKaUlp5ISXVOiZK04N6hmirVqYMzA-pdrotyJj-R7mfYiSi8OQUxbIcd3Ois4QY1iTmk3kJa05apReBitjGNLagbWzS9Lp5hzsu6PVyMxChejcHEUTn4AOvB2Zw
Cites_doi 10.1007/s13119-011-0002-7
10.1007/978-1-84628-970-5
10.1137/0603052
10.1016/j.tcs.2011.09.009
10.1002/(SICI)1097-0118(199907)31:3<163::AID-JGT2>3.0.CO;2-T
10.1016/j.dam.2011.04.008
10.1016/j.tcs.2011.09.013
10.1016/j.ipl.2015.12.002
10.1016/j.tcs.2016.04.043
10.1137/0210022
10.1002/net
10.1016/j.dam.2020.08.020
10.1145/322307.322309
10.1002/jgt.22627
10.1007/s10107-005-0649-5
10.1016/S0012-365X(02)00447-8
10.1016/j.tcs.2007.09.013
10.1016/j.dam.2011.04.023
ContentType Journal Article
CorporateAuthor Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China
Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province, XiNing 810008, China
Key Laboratory of Tibetan Information Processing, Ministry of Education, XiNing 810008, China
School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
CorporateAuthor_xml – name: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
– name: Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province, XiNing 810008, China
– name: Key Laboratory of Tibetan Information Processing, Ministry of Education, XiNing 810008, China
– name: School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
– name: Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China
– name: School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022036
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 578
ExternalDocumentID oai_doaj_org_article_9306b8fbcfc145479b6b2222cbdf854d
10_3934_math_2022036
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c335t-2d4639ff6ed96b48802db9694b7b44184a0bbca94a43c143ba1b99d018b87bc33
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000718878200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:03 EDT 2025
Sat Nov 29 06:04:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-2d4639ff6ed96b48802db9694b7b44184a0bbca94a43c143ba1b99d018b87bc33
OpenAccessLink https://doaj.org/article/9306b8fbcfc145479b6b2222cbdf854d
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_9306b8fbcfc145479b6b2222cbdf854d
crossref_primary_10_3934_math_2022036
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022036-20
key-10.3934/math.2022036-11
key-10.3934/math.2022036-10
key-10.3934/math.2022036-21
key-10.3934/math.2022036-17
key-10.3934/math.2022036-16
key-10.3934/math.2022036-19
key-10.3934/math.2022036-18
key-10.3934/math.2022036-7
key-10.3934/math.2022036-13
key-10.3934/math.2022036-8
key-10.3934/math.2022036-12
key-10.3934/math.2022036-9
key-10.3934/math.2022036-15
key-10.3934/math.2022036-14
key-10.3934/math.2022036-3
key-10.3934/math.2022036-4
key-10.3934/math.2022036-5
key-10.3934/math.2022036-6
key-10.3934/math.2022036-1
key-10.3934/math.2022036-2
References_xml – ident: key-10.3934/math.2022036-1
  doi: 10.1007/s13119-011-0002-7
– ident: key-10.3934/math.2022036-5
  doi: 10.1007/978-1-84628-970-5
– ident: key-10.3934/math.2022036-11
  doi: 10.1137/0603052
– ident: key-10.3934/math.2022036-13
  doi: 10.1016/j.tcs.2011.09.009
– ident: key-10.3934/math.2022036-15
  doi: 10.1002/(SICI)1097-0118(199907)31:3<163::AID-JGT2>3.0.CO;2-T
– ident: key-10.3934/math.2022036-7
  doi: 10.1016/j.dam.2011.04.008
– ident: key-10.3934/math.2022036-19
  doi: 10.1016/j.tcs.2011.09.013
– ident: key-10.3934/math.2022036-9
– ident: key-10.3934/math.2022036-14
  doi: 10.1016/j.ipl.2015.12.002
– ident: key-10.3934/math.2022036-20
  doi: 10.1016/j.tcs.2016.04.043
– ident: key-10.3934/math.2022036-21
  doi: 10.1137/0210022
– ident: key-10.3934/math.2022036-3
– ident: key-10.3934/math.2022036-4
– ident: key-10.3934/math.2022036-12
  doi: 10.1002/net
– ident: key-10.3934/math.2022036-6
  doi: 10.1016/j.dam.2020.08.020
– ident: key-10.3934/math.2022036-17
  doi: 10.1145/322307.322309
– ident: key-10.3934/math.2022036-18
  doi: 10.1002/jgt.22627
– ident: key-10.3934/math.2022036-8
  doi: 10.1007/s10107-005-0649-5
– ident: key-10.3934/math.2022036-10
  doi: 10.1016/S0012-365X(02)00447-8
– ident: key-10.3934/math.2022036-2
  doi: 10.1016/j.tcs.2007.09.013
– ident: key-10.3934/math.2022036-16
  doi: 10.1016/j.dam.2011.04.023
SSID ssj0002124274
Score 2.1679797
Snippet In a graph $ G $, a dissociation set is a subset of vertices which induces a subgraph with vertex degree at most 1. Finding a dissociation set of maximum...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 569
SubjectTerms independent set
maximum dissociation set
polynomial time algorithm
tree
Title Polynomial time recognition of vertices contained in all (or no) maximum dissociation sets of a tree
URI https://doaj.org/article/9306b8fbcfc145479b6b2222cbdf854d
Volume 7
WOSCitedRecordID wos000718878200028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8NADD6higEGxFOUl24ACYaoeRzJ3QiIiqVVB5C6Red7SJXaBLUpgoXfjp2kVZlYWDJEF-v0OWd_jh2bsWuvQERxFgc6NJ6aattApg4CF6NlhFBmPoR62EQ2HMrxWI02Rn1RTVjTHrgBrqeQ04L0YLyJqPmUghTQp8UGrJcomqwvsp6NYIpsMBpkgfFWU-meqET0kP9R7iGmxNsvH7TRqr_2Kf19tteSQf7QbOKAbbnikO0O1p1UF0fMjsrpF_06jOtoDjxfV_yUBS89r8cp41nnVHOOUb6zfFJwPZ3y23LOi_KOz_TnZLacccq8rzTBF65a0OOaU1b6mL31n1-fXoJ2MkJgkuS-CmIrkFl4nzqrUqAzGFtQqRKQAfIbKXQIYLQSWiQIWwI6AqVsGEmQGaCME9YpysKdMu5xMc1tVF4LgShDYrzwKCxEaqKTtMtuVljl700DjBwDB8I0J0zzFtMueyQg12uobXV9A5WZt8rM_1Lm2X8IOWc7tKfmO8kF61Tzpbtk2-ajmizmV_V7gtfB9_MPACzGAQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+time+recognition+of+vertices+contained+in+all+%28or+no%29+maximum+dissociation+sets+of+a+tree&rft.jtitle=AIMS+mathematics&rft.au=Jianhua+Tu&rft.au=Lei+Zhang&rft.au=Junfeng+Du&rft.au=Rongling+Lang&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=569&rft.epage=578&rft_id=info:doi/10.3934%2Fmath.2022036&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9306b8fbcfc145479b6b2222cbdf854d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon