Quantum neural network autoencoder and classifier applied to an industrial case study

Quantum computing technologies are in the process of moving from academic research to real industrial applications, with the first hints of quantum advantage demonstrated in recent months. In these early practical uses of quantum computers, it is relevant to develop algorithms that are useful for ac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Quantum machine intelligence Ročník 4; číslo 2
Hlavní autoři: Mangini, Stefano, Marruzzo, Alessia, Piantanida, Marco, Gerace, Dario, Bajoni, Daniele, Macchiavello, Chiara
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2022
Témata:
ISSN:2524-4906, 2524-4914
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum computing technologies are in the process of moving from academic research to real industrial applications, with the first hints of quantum advantage demonstrated in recent months. In these early practical uses of quantum computers, it is relevant to develop algorithms that are useful for actual industrial processes. In this work, we propose a quantum pipeline, comprising a quantum autoencoder followed by a quantum classifier, which are used to first compress and then label classical data coming from a separator, i.e., a machine used in one of Eni’s Oil Treatment Plants. This work represents one of the first attempts to integrate quantum computing procedures in a real-case scenario of an industrial pipeline, in particular using actual data coming from physical machines, rather than pedagogical data from benchmark datasets.
AbstractList Quantum computing technologies are in the process of moving from academic research to real industrial applications, with the first hints of quantum advantage demonstrated in recent months. In these early practical uses of quantum computers, it is relevant to develop algorithms that are useful for actual industrial processes. In this work, we propose a quantum pipeline, comprising a quantum autoencoder followed by a quantum classifier, which are used to first compress and then label classical data coming from a separator, i.e., a machine used in one of Eni’s Oil Treatment Plants. This work represents one of the first attempts to integrate quantum computing procedures in a real-case scenario of an industrial pipeline, in particular using actual data coming from physical machines, rather than pedagogical data from benchmark datasets.
ArticleNumber 13
Author Mangini, Stefano
Piantanida, Marco
Marruzzo, Alessia
Gerace, Dario
Bajoni, Daniele
Macchiavello, Chiara
Author_xml – sequence: 1
  givenname: Stefano
  orcidid: 0000-0002-0056-0660
  surname: Mangini
  fullname: Mangini, Stefano
  email: stefano.mangini01@universitadipavia.it
  organization: Dipartimento di Fisica, Università di Pavia, INFN Sezione di Pavia
– sequence: 2
  givenname: Alessia
  surname: Marruzzo
  fullname: Marruzzo, Alessia
  organization: Eni SpA
– sequence: 3
  givenname: Marco
  surname: Piantanida
  fullname: Piantanida, Marco
  organization: Eni SpA
– sequence: 4
  givenname: Dario
  surname: Gerace
  fullname: Gerace, Dario
  organization: Dipartimento di Fisica, Università di Pavia
– sequence: 5
  givenname: Daniele
  surname: Bajoni
  fullname: Bajoni, Daniele
  organization: Dipartimento di Ingegneria Industriale e dell’Informazione, Universitá di Pavia
– sequence: 6
  givenname: Chiara
  surname: Macchiavello
  fullname: Macchiavello, Chiara
  organization: Dipartimento di Fisica, Università di Pavia, INFN Sezione di Pavia, CNR-INO - Largo
BookMark eNp9kEtLQzEQhYNUsNb-AVf5A9G87mspxUehIIJdhzSZK6m3SUlykf57UysuXHR15jDnG5hzjSY-eEDoltE7RmlznySXrSSUc0KLp0ReoCmvuCSyY3LyN9P6Cs1T2pYQb4RsaT1F67dR-zzusIcx6qFI_grxE-sxB_AmWIhYe4vNoFNyvTva_X5wYHEOZYOdt2PK0RXW6AQ45dEebtBlr4cE81-dofXT4_vihaxen5eLhxUxQlSZ8LZrNlJXAHUlmTFN1VNDhWj4xhpGBZiOt7WltWxNr21roGO0sw1At7GsrsQMtae7JoaUIvTKuKyzCz5H7QbFqDo2pE4NqdKQ-mlIyYLyf-g-up2Oh_OQOEGphP0HRLUNY_TlxXPUN1BgfBY
CitedBy_id crossref_primary_10_1016_j_fraope_2025_100223
crossref_primary_10_1007_s11128_025_04864_w
crossref_primary_10_1007_s42484_024_00163_2
crossref_primary_10_3390_s23125683
crossref_primary_10_1007_s42484_025_00297_x
crossref_primary_10_1103_PhysRevResearch_7_023151
crossref_primary_10_1088_2399_6528_ad6db7
crossref_primary_10_1038_s41534_024_00872_3
crossref_primary_10_1088_2632_2153_adffe2
crossref_primary_10_1103_PhysRevA_111_042416
crossref_primary_10_1103_PhysRevResearch_5_023039
Cites_doi 10.22331/q-2018-08-06-79
10.1038/s41467-021-21728-w
10.1038/s41467-021-22539-9
10.22331/q-2020-02-06-226
10.1088/1367-2630/ab784c
10.1103/RevModPhys.94.015004
10.1109/TQE.2021.3062494
10.1103/PhysRevA.102.032420
10.1088/2058-9565/ac310f
10.1103/PhysRevA.99.032331
10.1103/PhysRevA.102.052414
10.1007/s42484-021-00058-6
10.1038/ncomms5213
10.1038/s41586-019-0980-2
10.1038/nature14236
10.1038/nature14539
10.1007/s11128-014-0809-8
10.1088/2058-9565/ab4eb5
10.1063/1.5141835
10.1209/0295-5075/134/10002
10.1038/s41534-019-0140-4
10.1038/s41592-020-0772-5
10.1088/2058-9565/abb8e4
10.1103/PhysRevLett.120.110501
10.1103/PhysRevA.103.032430
10.1103/PhysRevLett.126.190505
10.1088/2058-9565/aada1f
10.1038/s41467-018-07090-4
10.1088/1367-2630/aae94a
10.3389/fphy.2020.00297
10.1088/2058-9565/aa8072
10.1088/2632-2153/ac0616
10.1007/978-94-015-8330-5_4
10.1007/s00220-020-03699-z
10.1103/PhysRevLett.103.150502
10.1038/s43588-021-00084-1
10.1038/s42254-021-00348-9
10.1103/PhysRevA.98.032309
10.1007/978-0-387-84858-7
10.1038/nature23474
10.1088/2058-9565/aae22b
10.1103/PhysRevA.79.052304
10.1103/PhysRevA.98.022322
10.3390/a12020034
10.1088/1367-2630/18/2/023023
ContentType Journal Article
Copyright The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
DOI 10.1007/s42484-022-00070-4
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2524-4914
ExternalDocumentID 10_1007_s42484_022_00070_4
GrantInformation_xml – fundername: Eni
  grantid: 2500034935
  funderid: http://dx.doi.org/10.13039/501100003054
– fundername: Ministero dell’Istruzione, dell’Universitá e della Ricerca
  grantid: Dipartimenti di Eccellenza Program (2018-2022)
  funderid: http://dx.doi.org/10.13039/501100003407
– fundername: Università degli Studi di Pavia
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
C6C
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c335t-2897b4a5ee6541cc75f0c03372bdc103ec9286d0648cfad8ce9109d7ee9bd1653
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812514100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2524-4906
IngestDate Sat Nov 29 02:54:02 EST 2025
Tue Nov 18 21:14:28 EST 2025
Fri Feb 21 02:43:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Quantum data analysis
Quantum machine learning
Industrial case study
Quantum autoencoder
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c335t-2897b4a5ee6541cc75f0c03372bdc103ec9286d0648cfad8ce9109d7ee9bd1653
ORCID 0000-0002-0056-0660
OpenAccessLink https://link.springer.com/10.1007/s42484-022-00070-4
ParticipantIDs crossref_citationtrail_10_1007_s42484_022_00070_4
crossref_primary_10_1007_s42484_022_00070_4
springer_journals_10_1007_s42484_022_00070_4
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Quantum machine intelligence
PublicationTitleAbbrev Quantum Mach. Intell
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Tacchino F, Macchiavello C, Gerace D, Bajoni D (2019) An artificial neuron implemented on an actual quantum processor. npj Quantum Information 5:26
Xu X, Sun J, Endo S, Li Y, Benjamin SC, Yuan X (2019) Variational algorithms for linear algebra. arXiv:1909.03898 [quant-ph]
Bravo-Prieto C (2021) Quantum autoencoders with enhanced data encoding. arXiv:2010.06599 [quant-ph]
KruszynskaCKrausBLocal entanglability and multipartite entanglementPhys Rev A200979052304255042610.1103/PhysRevA.79.052304
LamataLAlvarez-RodriguezUMartín-GuerreroJDSanzMSolanoEQuantum autoencoders via quantum adders with genetic algorithmsQuantum Science and Technology2018401400710.1088/2058-9565/aae22b
Lloyd S, Schuld M, Ijaz A, Izaac J, Killoran N (2020) Quantum embeddings for machine learning. arXiv:2001.03622 [quant-ph]
Bharti K, Cervera-Lierta A, Kyaw TH, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann JS, Menke T, Mok WK, Sim S, Kwek LC, Aspuru-Guzik A (2021) Noisy intermediate-scale quantum (nisq) algorithms. arXiv:2101.08448 [quant-ph]
MnihVKavukcuogluKSilverDRusuAAVenessJBellemareMGGravesARiedmillerMFidjelandAKOstrovskiGPetersenSBeattieCSadikAAntonoglouIKingHKumaranDWierstraDLeggSHassabisDHuman-level control through deep reinforcement learningNature201551852910.1038/nature14236
BenedettiMLloydESackSFiorentiniMParameterized quantum circuits as machine learning modelsQuantum Sci Technol2019404300110.1088/2058-9565/ab4eb5
CerezoMSoneAVolkoffTCincioLColesPJCost function dependent barren plateaus in shallow parametrized quantum circuitsNature Communications202112179110.1038/s41467-021-21728-w
GentiniLCuccoliAPirandolaSVerrucchiPBanchiLNoise-resilient variational hybrid quantum-classical optimizationPhys Rev A2020102052414418997710.1103/PhysRevA.102.052414
Gratsea A, Huembeli P (2021) Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme. arXiv:2105.01477 [quant- ph]
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 10 Contributors (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17:261
Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics, Springer
Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR
PeruzzoAMcCleanJShadboltPYungMHZhouXQLovePJAspuru-GuzikAO’BrienJLA variational eigenvalue solver on a photonic quantum processorNature Communications20145421310.1038/ncomms5213
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine learning in PythonJournal of Machine Learning Research201112282528543481280.68189
Wilde MM (2017) Quantum Information Theory. 2nd edn. Cambridge University Press
Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press
LaRoseRCoyleBRobust data encodings for quantum classifiersPhys Rev A202010203242010.1103/PhysRevA.102.032420
Powell MJD (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez S, Hennart J-P (eds) Advances in Optimization and Numerical Analysis. Springer, Netherlands, Dordrecht, pp 51–67
Bravo-Prieto C, LaRose R, Cerezo M, Subasi Y, Cincio L, Coles PJ (2020) Variational quantum linear solver. arXiv:1909.05820 [quant-ph]
ChenYPanYZhangGChengSDetecting quantum entanglement with unsupervised learningQuantum Science and Technology2021710.1088/2058-9565/ac310f
HuangHYKuengRPreskillJInformation-theoretic bounds on quantum advantage in machine learningPhys Rev Lett2021126190505426550010.1103/PhysRevLett.126.190505
PreskillJQuantum Computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79
SharmaKKhatriSCerezoMColesPJNoise resilience of variational quantum compilingNew Journal of Physics202022043006412756010.1088/1367-2630/ab784c
NielsenMAChuangILQuantum computation and quantum information201010Cambridge University PressCambridge1288.81001
McCleanJRRomeroJBabbushRAspuru-GuzikAThe theory of variational hybrid quantum-classical algorithmsNew J Phys20161802302310.1088/1367-2630/18/2/0230231456.81149
CincioLSubaşıYSornborgerATColesPJLearning the quantum algorithm for state overlapNew Journal of Physics20182011302210.1088/1367-2630/aae94a
ManginiSTacchinoFGeraceDBajoniDMacchiavelloCQuantum computing models for artificial neural networksEPL (Europhysics Letters)20211341000210.1209/0295-5075/134/10002
SchuldMBergholmVGogolinCIzaacJKilloranNEvaluating analytic gradients on quantum hardwarePhys Rev A20199903233110.1103/PhysRevA.99.032331
AbbasASutterDZoufalCLucchiAFigalliAWoernerSThe power of quantum neural networksNature Computational Science2021140310.1038/s43588-021-00084-1
Hadfield S, Wang Z, O’Gorman B, Rieffel EG (2019) From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12. https://doi.org/10.3390/a12020034
KivlichanIDMcCleanJWiebeNGidneyCAspuru-GuzikAChanGKLBabbushRQuantum simulation of electronic structure with linear depth and connectivityPhys Rev Lett2018120110501377812710.1103/PhysRevLett.120.110501
Pérez-SalinasACervera-LiertaAGil-FusterELatorreJIData re-uploading for a universal quantum classifierQuantum2020422610.22331/q-2020-02-06-226
HarrowAWHassidimALloydSQuantum algorithm for linear systems of equationsPhys Rev Lett2009103150502255168810.1103/PhysRevLett.103.150502
RomeroJOlsonJPAspuru-GuzikAQuantum autoencoders for efficient compression of quantum dataQuantum Science and Technology2017204500110.1088/2058-9565/aa8072
Abraham H, et al (2019) Qiskit: An open-source framework for quantum computing
Bergholm V, Izaac J, Schuld M, Gogolin C, Alam MS, Ahmed S, Arrazola JM, Blank C, Delgado A, Jahangiri S, McKiernan K, Meyer JJ, Niu Z, Száva A, Killoran N (2020) Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968 [quant-ph]
LeCunYBengioYHintonGDeep learningNature201552143644410.1038/nature14539
TacchinoFManginiSBarkoutsosPKMacchiavelloCGeraceDTavernelliIBajoniDVariational learning for quantum artificial neural networksIEEE Transactions on Quantum Engineering20212110.1109/TQE.2021.3062494
Gil VidalFJTheisDOInput redundancy for parameterized quantum circuitsFront Phys2020829710.3389/fphy.2020.00297
HuangHYBroughtonMMohseniMBabbushRBoixoSNevenHMcCleanJRPower of data in quantum machine learningNature Communications202112263110.1038/s41467-021-22539-9
SchuldMSinayskiyIPetruccioneFThe quest for a quantum neural networkQuantum Inf Process20141325672586327024110.1007/s11128-014-0809-81305.81055
SokolovIOBarkoutsosPKOllitraultPJGreenbergDRiceJPistoiaMTavernelliIQuantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents?The Journal of Chemical Physics202015210.1063/1.5141835
Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, Massey P, Niu MY, Halavati R, Peters E, Leib M, Skolik A, Streif M, Dollen DV, McClean JR, Boixo S, Bacon D, Ho AK, Neven H, Mohseni M (2020) Tensorflow quantum: A software framework for quantum machine learning. arXiv:2003.02989 [quant-ph]
Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv:1411.4028 [quant-ph]
BiamonteJWittekPPancottiNRebentrostPWiebeNLloydSQuantum machine learningNature201754919520210.1038/nature23474
SchuldMSwekeRMeyerJJEffect of data encoding on the expressive power of variational quantum-machine-learning modelsPhys Rev A2021103032430424394310.1103/PhysRevA.103.032430
McCleanJRBoixoSSmelyanskiyVNBabbushRNevenHBarren plateaus in quantum neural network training landscapesNat Commun20189481210.1038/s41467-018-07090-4
ChildsAMLiuJPQuantum Spectral Methods for Differential EquationsCommunications in Mathematical Physics20203751427408389210.1007/s00220-020-03699-z1444.81011
TacchinoFBarkoutsosPMacchiavelloCTavernelliIGeraceDBajoniDQuantum implementation of an artificial feed-forward neural networkQuantum Sci Technol2020504401010.1088/2058-9565/abb8e4
ManginiSTacchinoFGeraceDMacchiavelloCBajoniDQuantum computing model of an artificial neuron with continuously valued input dataMachine Learning: Science and Technology20201045008
BarkoutsosPKGonthierJFSokolovIMollNSalisGFuhrerAGanzhornMEggerDJTroyerMMezzacapoAFilippSTavernelliIQuantum algorithms for electronic structure calculations: Particle-hole hamiltonian and optimized wave-function expansionsPhys Rev A20189802232210.1103/PhysRevA.98.022322
HavlíčekVCórcolesADTemmeKHarrowAWKandalaAChowJMGambettaJMSupervised learning with quantum-enhanced feature spacesNature201956720921210.1038/s41586-019-0980-2
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/, software available from tensorflow.org
Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, McClean JR, Mitarai K, Yuan X, Cincio L, Coles PJ (2020) Variational quantum algorithms. arXiv:2012.09265 [quant-ph]
KhoshamanAVinciWDenisBAndriyashESadeghiHAminMHQuantum variational autoencoderQuantum Science and Technology2018401400110.1088/2058-9565/aada1f
MitaraiKNegoroMKitagawaMFujiiKQuantum circuit learningPhys Rev A2018980323
J Biamonte (70_CR8) 2017; 549
L Gentini (70_CR18) 2020; 102
JR McClean (70_CR39) 2018; 9
M Benedetti (70_CR5) 2019; 4
S Mangini (70_CR36) 2020; 1
M Schuld (70_CR50) 2019; 99
70_CR35
AW Harrow (70_CR23) 2009; 103
F Pedregosa (70_CR43) 2011; 12
ID Kivlichan (70_CR30) 2018; 120
F Tacchino (70_CR55) 2020; 5
70_CR3
Y Chen (70_CR14) 2021; 7
70_CR1
A Khoshaman (70_CR28) 2018; 4
FJ Gil Vidal (70_CR19) 2020; 8
A Pérez-Salinas (70_CR44) 2020; 4
70_CR29
K Mitarai (70_CR40) 2018; 98
K Sharma (70_CR52) 2020; 22
70_CR20
R LaRose (70_CR33) 2020; 102
70_CR22
70_CR21
70_CR24
IO Sokolov (70_CR53) 2020; 152
V Mnih (70_CR41) 2015; 518
V Havlíček (70_CR25) 2019; 567
70_CR59
HY Huang (70_CR27) 2021; 126
F Tacchino (70_CR56) 2021; 2
70_CR58
70_CR17
M Schuld (70_CR49) 2014; 13
L Cincio (70_CR16) 2018; 20
70_CR11
70_CR10
C Kruszynska (70_CR31) 2009; 79
70_CR54
Y LeCun (70_CR34) 2015; 521
70_CR57
A Abbas (70_CR2) 2021; 1
70_CR12
M Cerezo (70_CR13) 2021; 12
MA Nielsen (70_CR42) 2010
JR McClean (70_CR38) 2016; 18
L Lamata (70_CR32) 2018; 4
HY Huang (70_CR26) 2021; 12
70_CR7
70_CR6
J Preskill (70_CR47) 2018; 2
70_CR46
70_CR9
J Romero (70_CR48) 2017; 2
M Schuld (70_CR51) 2021; 103
AM Childs (70_CR15) 2020; 375
S Mangini (70_CR37) 2021; 134
PK Barkoutsos (70_CR4) 2018; 98
A Peruzzo (70_CR45) 2014; 5
References_xml – reference: KhoshamanAVinciWDenisBAndriyashESadeghiHAminMHQuantum variational autoencoderQuantum Science and Technology2018401400110.1088/2058-9565/aada1f
– reference: SchuldMSinayskiyIPetruccioneFThe quest for a quantum neural networkQuantum Inf Process20141325672586327024110.1007/s11128-014-0809-81305.81055
– reference: LeCunYBengioYHintonGDeep learningNature201552143644410.1038/nature14539
– reference: SharmaKKhatriSCerezoMColesPJNoise resilience of variational quantum compilingNew Journal of Physics202022043006412756010.1088/1367-2630/ab784c
– reference: SchuldMBergholmVGogolinCIzaacJKilloranNEvaluating analytic gradients on quantum hardwarePhys Rev A20199903233110.1103/PhysRevA.99.032331
– reference: BarkoutsosPKGonthierJFSokolovIMollNSalisGFuhrerAGanzhornMEggerDJTroyerMMezzacapoAFilippSTavernelliIQuantum algorithms for electronic structure calculations: Particle-hole hamiltonian and optimized wave-function expansionsPhys Rev A20189802232210.1103/PhysRevA.98.022322
– reference: SokolovIOBarkoutsosPKOllitraultPJGreenbergDRiceJPistoiaMTavernelliIQuantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents?The Journal of Chemical Physics202015210.1063/1.5141835
– reference: Bergholm V, Izaac J, Schuld M, Gogolin C, Alam MS, Ahmed S, Arrazola JM, Blank C, Delgado A, Jahangiri S, McKiernan K, Meyer JJ, Niu Z, Száva A, Killoran N (2020) Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv:1811.04968 [quant-ph]
– reference: RomeroJOlsonJPAspuru-GuzikAQuantum autoencoders for efficient compression of quantum dataQuantum Science and Technology2017204500110.1088/2058-9565/aa8072
– reference: ChenYPanYZhangGChengSDetecting quantum entanglement with unsupervised learningQuantum Science and Technology2021710.1088/2058-9565/ac310f
– reference: Gratsea A, Huembeli P (2021) Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme. arXiv:2105.01477 [quant- ph]
– reference: KruszynskaCKrausBLocal entanglability and multipartite entanglementPhys Rev A200979052304255042610.1103/PhysRevA.79.052304
– reference: Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, McClean JR, Mitarai K, Yuan X, Cincio L, Coles PJ (2020) Variational quantum algorithms. arXiv:2012.09265 [quant-ph]
– reference: Gil VidalFJTheisDOInput redundancy for parameterized quantum circuitsFront Phys2020829710.3389/fphy.2020.00297
– reference: ManginiSTacchinoFGeraceDBajoniDMacchiavelloCQuantum computing models for artificial neural networksEPL (Europhysics Letters)20211341000210.1209/0295-5075/134/10002
– reference: Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 10 Contributors (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17:261
– reference: AbbasASutterDZoufalCLucchiAFigalliAWoernerSThe power of quantum neural networksNature Computational Science2021140310.1038/s43588-021-00084-1
– reference: Broughton M, Verdon G, McCourt T, Martinez AJ, Yoo JH, Isakov SV, Massey P, Niu MY, Halavati R, Peters E, Leib M, Skolik A, Streif M, Dollen DV, McClean JR, Boixo S, Bacon D, Ho AK, Neven H, Mohseni M (2020) Tensorflow quantum: A software framework for quantum machine learning. arXiv:2003.02989 [quant-ph]
– reference: PreskillJQuantum Computing in the NISQ era and beyondQuantum201827910.22331/q-2018-08-06-79
– reference: Bravo-Prieto C, LaRose R, Cerezo M, Subasi Y, Cincio L, Coles PJ (2020) Variational quantum linear solver. arXiv:1909.05820 [quant-ph]
– reference: BiamonteJWittekPPancottiNRebentrostPWiebeNLloydSQuantum machine learningNature201754919520210.1038/nature23474
– reference: GentiniLCuccoliAPirandolaSVerrucchiPBanchiLNoise-resilient variational hybrid quantum-classical optimizationPhys Rev A2020102052414418997710.1103/PhysRevA.102.052414
– reference: Hadfield S, Wang Z, O’Gorman B, Rieffel EG (2019) From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12. https://doi.org/10.3390/a12020034
– reference: HavlíčekVCórcolesADTemmeKHarrowAWKandalaAChowJMGambettaJMSupervised learning with quantum-enhanced feature spacesNature201956720921210.1038/s41586-019-0980-2
– reference: HarrowAWHassidimALloydSQuantum algorithm for linear systems of equationsPhys Rev Lett2009103150502255168810.1103/PhysRevLett.103.150502
– reference: CincioLSubaşıYSornborgerATColesPJLearning the quantum algorithm for state overlapNew Journal of Physics20182011302210.1088/1367-2630/aae94a
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine learning in PythonJournal of Machine Learning Research201112282528543481280.68189
– reference: NielsenMAChuangILQuantum computation and quantum information201010Cambridge University PressCambridge1288.81001
– reference: KivlichanIDMcCleanJWiebeNGidneyCAspuru-GuzikAChanGKLBabbushRQuantum simulation of electronic structure with linear depth and connectivityPhys Rev Lett2018120110501377812710.1103/PhysRevLett.120.110501
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/, software available from tensorflow.org
– reference: HuangHYKuengRPreskillJInformation-theoretic bounds on quantum advantage in machine learningPhys Rev Lett2021126190505426550010.1103/PhysRevLett.126.190505
– reference: Farhi E, Goldstone J, Gutmann S (2014) A quantum approximate optimization algorithm. arXiv:1411.4028 [quant-ph]
– reference: PeruzzoAMcCleanJShadboltPYungMHZhouXQLovePJAspuru-GuzikAO’BrienJLA variational eigenvalue solver on a photonic quantum processorNature Communications20145421310.1038/ncomms5213
– reference: McCleanJRBoixoSSmelyanskiyVNBabbushRNevenHBarren plateaus in quantum neural network training landscapesNat Commun20189481210.1038/s41467-018-07090-4
– reference: Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics, Springer
– reference: LamataLAlvarez-RodriguezUMartín-GuerreroJDSanzMSolanoEQuantum autoencoders via quantum adders with genetic algorithmsQuantum Science and Technology2018401400710.1088/2058-9565/aae22b
– reference: MitaraiKNegoroMKitagawaMFujiiKQuantum circuit learningPhys Rev A20189803230910.1103/PhysRevA.98.032309
– reference: Powell MJD (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez S, Hennart J-P (eds) Advances in Optimization and Numerical Analysis. Springer, Netherlands, Dordrecht, pp 51–67
– reference: ChildsAMLiuJPQuantum Spectral Methods for Differential EquationsCommunications in Mathematical Physics20203751427408389210.1007/s00220-020-03699-z1444.81011
– reference: HuangHYBroughtonMMohseniMBabbushRBoixoSNevenHMcCleanJRPower of data in quantum machine learningNature Communications202112263110.1038/s41467-021-22539-9
– reference: TacchinoFManginiSBarkoutsosPKMacchiavelloCGeraceDTavernelliIBajoniDVariational learning for quantum artificial neural networksIEEE Transactions on Quantum Engineering20212110.1109/TQE.2021.3062494
– reference: CerezoMSoneAVolkoffTCincioLColesPJCost function dependent barren plateaus in shallow parametrized quantum circuitsNature Communications202112179110.1038/s41467-021-21728-w
– reference: Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR
– reference: Pérez-SalinasACervera-LiertaAGil-FusterELatorreJIData re-uploading for a universal quantum classifierQuantum2020422610.22331/q-2020-02-06-226
– reference: Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press
– reference: Tacchino F, Macchiavello C, Gerace D, Bajoni D (2019) An artificial neuron implemented on an actual quantum processor. npj Quantum Information 5:26
– reference: LaRoseRCoyleBRobust data encodings for quantum classifiersPhys Rev A202010203242010.1103/PhysRevA.102.032420
– reference: McCleanJRRomeroJBabbushRAspuru-GuzikAThe theory of variational hybrid quantum-classical algorithmsNew J Phys20161802302310.1088/1367-2630/18/2/0230231456.81149
– reference: BenedettiMLloydESackSFiorentiniMParameterized quantum circuits as machine learning modelsQuantum Sci Technol2019404300110.1088/2058-9565/ab4eb5
– reference: Lloyd S, Schuld M, Ijaz A, Izaac J, Killoran N (2020) Quantum embeddings for machine learning. arXiv:2001.03622 [quant-ph]
– reference: SchuldMSwekeRMeyerJJEffect of data encoding on the expressive power of variational quantum-machine-learning modelsPhys Rev A2021103032430424394310.1103/PhysRevA.103.032430
– reference: Wilde MM (2017) Quantum Information Theory. 2nd edn. Cambridge University Press
– reference: Bharti K, Cervera-Lierta A, Kyaw TH, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann JS, Menke T, Mok WK, Sim S, Kwek LC, Aspuru-Guzik A (2021) Noisy intermediate-scale quantum (nisq) algorithms. arXiv:2101.08448 [quant-ph]
– reference: Bravo-Prieto C (2021) Quantum autoencoders with enhanced data encoding. arXiv:2010.06599 [quant-ph]
– reference: MnihVKavukcuogluKSilverDRusuAAVenessJBellemareMGGravesARiedmillerMFidjelandAKOstrovskiGPetersenSBeattieCSadikAAntonoglouIKingHKumaranDWierstraDLeggSHassabisDHuman-level control through deep reinforcement learningNature201551852910.1038/nature14236
– reference: TacchinoFBarkoutsosPMacchiavelloCTavernelliIGeraceDBajoniDQuantum implementation of an artificial feed-forward neural networkQuantum Sci Technol2020504401010.1088/2058-9565/abb8e4
– reference: Abraham H, et al (2019) Qiskit: An open-source framework for quantum computing
– reference: ManginiSTacchinoFGeraceDMacchiavelloCBajoniDQuantum computing model of an artificial neuron with continuously valued input dataMachine Learning: Science and Technology20201045008
– reference: Xu X, Sun J, Endo S, Li Y, Benjamin SC, Yuan X (2019) Variational algorithms for linear algebra. arXiv:1909.03898 [quant-ph]
– volume: 2
  start-page: 79
  year: 2018
  ident: 70_CR47
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– volume: 12
  start-page: 1791
  year: 2021
  ident: 70_CR13
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-21728-w
– volume: 12
  start-page: 2631
  year: 2021
  ident: 70_CR26
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-22539-9
– volume: 4
  start-page: 226
  year: 2020
  ident: 70_CR44
  publication-title: Quantum
  doi: 10.22331/q-2020-02-06-226
– ident: 70_CR10
– volume: 22
  start-page: 043006
  year: 2020
  ident: 70_CR52
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/ab784c
– ident: 70_CR7
  doi: 10.1103/RevModPhys.94.015004
– volume: 2
  start-page: 1
  year: 2021
  ident: 70_CR56
  publication-title: IEEE Transactions on Quantum Engineering
  doi: 10.1109/TQE.2021.3062494
– volume: 102
  start-page: 032420
  year: 2020
  ident: 70_CR33
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.102.032420
– volume: 7
  year: 2021
  ident: 70_CR14
  publication-title: Quantum Science and Technology
  doi: 10.1088/2058-9565/ac310f
– volume: 99
  start-page: 032331
  year: 2019
  ident: 70_CR50
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.99.032331
– volume: 102
  start-page: 052414
  year: 2020
  ident: 70_CR18
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.102.052414
– ident: 70_CR21
  doi: 10.1007/s42484-021-00058-6
– volume: 1
  start-page: 045008
  year: 2020
  ident: 70_CR36
  publication-title: Machine Learning: Science and Technology
– ident: 70_CR20
– ident: 70_CR17
– ident: 70_CR59
– volume: 5
  start-page: 4213
  year: 2014
  ident: 70_CR45
  publication-title: Nature Communications
  doi: 10.1038/ncomms5213
– volume: 567
  start-page: 209
  year: 2019
  ident: 70_CR25
  publication-title: Nature
  doi: 10.1038/s41586-019-0980-2
– volume: 518
  start-page: 529
  year: 2015
  ident: 70_CR41
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 521
  start-page: 436
  year: 2015
  ident: 70_CR34
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 13
  start-page: 2567
  year: 2014
  ident: 70_CR49
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-014-0809-8
– volume: 4
  start-page: 043001
  year: 2019
  ident: 70_CR5
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/ab4eb5
– volume: 152
  year: 2020
  ident: 70_CR53
  publication-title: The Journal of Chemical Physics
  doi: 10.1063/1.5141835
– volume: 134
  start-page: 10002
  year: 2021
  ident: 70_CR37
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/0295-5075/134/10002
– ident: 70_CR54
  doi: 10.1038/s41534-019-0140-4
– ident: 70_CR57
  doi: 10.1038/s41592-020-0772-5
– ident: 70_CR3
– volume: 5
  start-page: 044010
  year: 2020
  ident: 70_CR55
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/abb8e4
– volume: 120
  start-page: 110501
  year: 2018
  ident: 70_CR30
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.120.110501
– volume: 103
  start-page: 032430
  year: 2021
  ident: 70_CR51
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.103.032430
– volume: 126
  start-page: 190505
  year: 2021
  ident: 70_CR27
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.126.190505
– volume: 4
  start-page: 014001
  year: 2018
  ident: 70_CR28
  publication-title: Quantum Science and Technology
  doi: 10.1088/2058-9565/aada1f
– ident: 70_CR58
– volume: 9
  start-page: 4812
  year: 2018
  ident: 70_CR39
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07090-4
– volume: 20
  start-page: 113022
  year: 2018
  ident: 70_CR16
  publication-title: New Journal of Physics
  doi: 10.1088/1367-2630/aae94a
– volume: 8
  start-page: 297
  year: 2020
  ident: 70_CR19
  publication-title: Front Phys
  doi: 10.3389/fphy.2020.00297
– ident: 70_CR29
– volume: 2
  start-page: 045001
  year: 2017
  ident: 70_CR48
  publication-title: Quantum Science and Technology
  doi: 10.1088/2058-9565/aa8072
– ident: 70_CR9
  doi: 10.1088/2632-2153/ac0616
– ident: 70_CR6
– ident: 70_CR46
  doi: 10.1007/978-94-015-8330-5_4
– volume: 375
  start-page: 1427
  year: 2020
  ident: 70_CR15
  publication-title: Communications in Mathematical Physics
  doi: 10.1007/s00220-020-03699-z
– volume: 12
  start-page: 2825
  year: 2011
  ident: 70_CR43
  publication-title: Journal of Machine Learning Research
– volume: 103
  start-page: 150502
  year: 2009
  ident: 70_CR23
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.103.150502
– volume: 1
  start-page: 403
  year: 2021
  ident: 70_CR2
  publication-title: Nature Computational Science
  doi: 10.1038/s43588-021-00084-1
– ident: 70_CR12
  doi: 10.1038/s42254-021-00348-9
– ident: 70_CR11
– volume-title: Quantum computation and quantum information
  year: 2010
  ident: 70_CR42
– volume: 98
  start-page: 032309
  year: 2018
  ident: 70_CR40
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.98.032309
– ident: 70_CR24
  doi: 10.1007/978-0-387-84858-7
– volume: 549
  start-page: 195
  year: 2017
  ident: 70_CR8
  publication-title: Nature
  doi: 10.1038/nature23474
– ident: 70_CR1
– volume: 4
  start-page: 014007
  year: 2018
  ident: 70_CR32
  publication-title: Quantum Science and Technology
  doi: 10.1088/2058-9565/aae22b
– volume: 79
  start-page: 052304
  year: 2009
  ident: 70_CR31
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.79.052304
– volume: 98
  start-page: 022322
  year: 2018
  ident: 70_CR4
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.98.022322
– ident: 70_CR35
– ident: 70_CR22
  doi: 10.3390/a12020034
– volume: 18
  start-page: 023023
  year: 2016
  ident: 70_CR38
  publication-title: New J Phys
  doi: 10.1088/1367-2630/18/2/023023
SSID ssj0002734806
Score 2.3613276
Snippet Quantum computing technologies are in the process of moving from academic research to real industrial applications, with the first hints of quantum advantage...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Artificial Intelligence
Computational Intelligence
Engineering
Quantum Information Technology
Research Article
Spintronics
Title Quantum neural network autoencoder and classifier applied to an industrial case study
URI https://link.springer.com/article/10.1007/s42484-022-00070-4
Volume 4
WOSCitedRecordID wos000812514100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2524-4914
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734806
  issn: 2524-4906
  databaseCode: RSV
  dateStart: 20190501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F9kYM3DaRtmsdRxMWDLL522VtJkxQK2spu6-83SR-4IAt6LJ2U8mXSmTTzfQPAVSqYMJoYRKX1YEJphiQPKFJ20-NIA4J4fsX0kY3HfDYTTy0pbNFVu3dHkv5L3ZPdSEg4Qa763AU2jMg62LDhjrvl-PI67f-seMEW31QzjEOCiMC0Zcv8_pjliLR8HOqjzGj3f--3B3barBLeNm6wD9ZMcQC2f2gNHoLJc21BrD-gU7C0tkVT_w1lXZVOzFKbOZSFhsql03mWu8smQ4VVae_AvG_yAZUNfdAL0x6Byej-7e4BtT0VkIqiuEJ2f8VSImNjXANwpVicYYWjiIWpVgGOjBIhp9omKlxlUnNlbD4hNDNGpDqgcXQMBkVZmBMAs8BiT1IhU81IjCXHGptMM05klDIqhiDocE1UKzju-l68J71UsocssZAlHrKEDMF1P-azkdtYaX3TTUXSLr3FCvPTv5mfga3QzaavXTkHg2pemwuwqb6qfDG_9D73DSFpzzI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNA72kuTyKOCbO4WUbeytpkkJBO9laf79J2hUHMtDH0tNQTk7znTTn-w4AVwmnXCusEREmgjEhKRLMJ0iaTY8lDXDs-BWjHu332XjMn2tS2Gxe7T4_knQrdUN2wwFmGNnqcwtsHsKrYA0bxLKFfK9vo-bPihNscU01gyjACHOP1GyZ34dZRKTF41CHMp2d_73fLtius0p4W4XBHljR-T7Y-qE1eACGL6VxYvkBrYKlsc2r-m8oymJixSyVnkKRKyhtOp2lmb2sMlRYTMwdmDVNPqA00AedMO0hGHbuB3ddVPdUQDIMowKZ_RVNsIi0tg3ApaRR6kkvDGmQKOl7oZY8YESZRIXJVCgmtcknuKJa80T5JAqPQCuf5PoYwNTnzMcJF4miOPIE85SnU0UZFmFCCW8Df-7XWNaC47bvxXvcSCU7l8XGZbFzWYzb4Lp55rOS21hqfTOfirj-9GZLzE_-Zn4JNrqDp17ce-g_noLNwM6sq2M5A61iWupzsC6_imw2vXDx9w3hjdIW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA46RfTB3-L8mQffNCxt0yZ5FHUojjHRjb2VNEmhoN3YOv9-k7QrG8hAfCy9lHK5cnfNfd8HwE3CKdeKaBQJE8EkilIkmBchaZoeCxrgxOErBh3a7bLhkPcWUPxu2n1-JFliGixLU160xipt1cA34hNGkJ1Et0kOI7IONogVDbL9-vug_sviyFucwKYf-gQRjqMKOfP7Y5az0_LRqMs47b3_v-s-2K2qTXhfhscBWNP5IdhZ4CA8Av23mXHu7AtaZktjm5dz4VDMipEluVR6AkWuoLRldpZm9rKsXGExMndgVot_QGlSInSEtceg3376eHhGldYCkkEQFsj0XTQhItTaCoNLScMUSxwE1E-U9HCgJfdZpEwBw2QqFJPa1BlcUa15orwoDE5AIx_l-hTA1OPMIwkXiaIkxIJhhXWqKCMiSGjEm8Cb-ziWFRG51cP4jGsKZeey2Lgsdi6LSRPc1mvGJQ3HSuu7-bbE1Sc5XWF-9jfza7DVe2zHnZfu6znY9u3GuvGWC9AoJjN9CTbld5FNJ1cuFH8A4l3a-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+neural+network+autoencoder+and+classifier+applied+to+an+industrial+case+study&rft.jtitle=Quantum+machine+intelligence&rft.au=Mangini%2C+Stefano&rft.au=Marruzzo%2C+Alessia&rft.au=Piantanida%2C+Marco&rft.au=Gerace%2C+Dario&rft.date=2022-12-01&rft.pub=Springer+International+Publishing&rft.issn=2524-4906&rft.eissn=2524-4914&rft.volume=4&rft.issue=2&rft_id=info:doi/10.1007%2Fs42484-022-00070-4&rft.externalDocID=10_1007_s42484_022_00070_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-4906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-4906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-4906&client=summon