NONLINEAR FORECASTING OF THE GOLD MINER SPREAD: AN APPLICATION OF CORRELATION FILTERS

SUMMARY This paper models and forecasts the Gold Miner Spread from 23 May 2006 to 30 June 2011. The Gold Miner Spread acts as a suitable performance indicator for the relationship between physical gold and US gold equity. The contribution of this investigation is twofold. First, the accuracy of each...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Intelligent systems in accounting, finance & management Ročník 20; číslo 4; s. 207 - 231
Hlavní autori: Dunis, Christian L., Laws, Jason, Middleton, Peter W., Karathanasopoulos, Andreas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester Blackwell Publishing Ltd 01.10.2013
Wiley Periodicals Inc
Predmet:
ISSN:1550-1949, 2160-0074
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract SUMMARY This paper models and forecasts the Gold Miner Spread from 23 May 2006 to 30 June 2011. The Gold Miner Spread acts as a suitable performance indicator for the relationship between physical gold and US gold equity. The contribution of this investigation is twofold. First, the accuracy of each model is evaluated from a statistical perspective. Second, various forecasting methodologies are then applied to trade the spread. Trading models include an ARMA (12,12) model, a cointegration model, a multilayer perceptron neural network (NN), a particle swarm optimization radial basis function NN and a genetic programming algorithm (GPA). Results obtained from an out‐of‐sample trading simulation validate the in‐sample back test as the GPA model produced the highest risk‐adjusted returns. Correlation filters are also applied to enhance performance and, as a consequence, volatility is reduced by 5%, on average, while returns are improved between 2.54% and 8.11% across five of the six models. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList SUMMARY This paper models and forecasts the Gold Miner Spread from 23 May 2006 to 30 June 2011. The Gold Miner Spread acts as a suitable performance indicator for the relationship between physical gold and US gold equity. The contribution of this investigation is twofold. First, the accuracy of each model is evaluated from a statistical perspective. Second, various forecasting methodologies are then applied to trade the spread. Trading models include an ARMA (12,12) model, a cointegration model, a multilayer perceptron neural network (NN), a particle swarm optimization radial basis function NN and a genetic programming algorithm (GPA). Results obtained from an out‐of‐sample trading simulation validate the in‐sample back test as the GPA model produced the highest risk‐adjusted returns. Correlation filters are also applied to enhance performance and, as a consequence, volatility is reduced by 5%, on average, while returns are improved between 2.54% and 8.11% across five of the six models. Copyright © 2013 John Wiley & Sons, Ltd.
This paper models and forecasts the Gold Miner Spread from 23 May 2006 to 30 June 2011. The Gold Miner Spread acts as a suitable performance indicator for the relationship between physical gold and US gold equity. The contribution of this investigation is twofold. First, the accuracy of each model is evaluated from a statistical perspective. Second, various forecasting methodologies are then applied to trade the spread. Trading models include an ARMA (12,12) model, a cointegration model, a multilayer perceptron neural network (NN), a particle swarm optimization radial basis function NN and a genetic programming algorithm (GPA). Results obtained from an out-of-sample trading simulation validate the in-sample back test as the GPA model produced the highest risk-adjusted returns. Correlation filters are also applied to enhance performance and, as a consequence, volatility is reduced by 5%, on average, while returns are improved between 2.54% and 8.11% across five of the six models. [PUBLICATION ABSTRACT]
This paper models and forecasts the Gold Miner Spread from 23 May 2006 to 30 June 2011. The Gold Miner Spread acts as a suitable performance indicator for the relationship between physical gold and US gold equity. The contribution of this investigation is twofold. First, the accuracy of each model is evaluated from a statistical perspective. Second, various forecasting methodologies are then applied to trade the spread. Trading models include an ARMA (12,12) model, a cointegration model, a multilayer perceptron neural network (NN), a particle swarm optimization radial basis function NN and a genetic programming algorithm (GPA). Results obtained from an out‐of‐sample trading simulation validate the in‐sample back test as the GPA model produced the highest risk‐adjusted returns. Correlation filters are also applied to enhance performance and, as a consequence, volatility is reduced by 5%, on average, while returns are improved between 2.54% and 8.11% across five of the six models. Copyright © 2013 John Wiley & Sons, Ltd.
Author Dunis, Christian L.
Middleton, Peter W.
Laws, Jason
Karathanasopoulos, Andreas
Author_xml – sequence: 1
  givenname: Christian L.
  surname: Dunis
  fullname: Dunis, Christian L.
  organization: Horus Partners Wealth Management Group, Geneva, Switzerland and Emeritus Professor of Banking and Finance at Liverpool John Moores University, Hatton Garden, Liverpool, UK
– sequence: 2
  givenname: Jason
  surname: Laws
  fullname: Laws, Jason
  organization: CIBEF, University of Liverpool, Liverpool, UK
– sequence: 3
  givenname: Peter W.
  surname: Middleton
  fullname: Middleton, Peter W.
  email: peter.william.middleton@gmail.com
  organization: CIBEF, University of Liverpool, Liverpool, UK
– sequence: 4
  givenname: Andreas
  surname: Karathanasopoulos
  fullname: Karathanasopoulos, Andreas
  organization: London Metropolitan University, Holloway Road, London, UK
BookMark eNp1kE1rg0AQhpeSQpO0h_4DoaceTPbDdbU3MWoEo8EYAr0sG7OCaaqpa2jz76sk9FDa0zDM88wM7wgMqrqSADwiOEEQ4mmpRDFBxKA3YIiRCXUImTEAQ0Qp1JFt2HdgpNS-Q20MjSFYx0kchbHnpJqfpJ7rrLIwDrTE17K5pwVJNNMW3TjVVsvUc2YvmhNrznIZha6ThUncg26Spl50af0wyrx0dQ9uC3FQ8uFax2Dte5k716Mk6MxIzwmhVN9ZW9b9BU0jF6ZpSwQFoqZlbSGjwiS5hSiWUBaY7HaSYsxwbm_ZTjIhtgILi4zB02Xvsak_TlK1fF-fmqo7yZHBkI0QgkZHTS9U3tRKNbLgedmKtqyrthHlgSPI--x4nx3vs-uM51_GsSnfRXP-k71u_ywP8vw_yMOV418N_WKUqpVfP4Zo3rjJCKN8Ewc8ghu22JBX7pNvA56G-w
CitedBy_id crossref_primary_10_1108_SEF_01_2015_0009
crossref_primary_10_1002_isaf_1382
crossref_primary_10_1002_isaf_1470
crossref_primary_10_1002_isaf_1519
crossref_primary_10_1016_j_techfore_2024_123746
Cites_doi 10.4018/978-1-61520-666-7.ch006
10.2307/1913236
10.1162/neco.1989.1.4.425
10.1002/(SICI)1099-1255(199611)11:6<601::AID-JAE417>3.0.CO;2-T
10.1049/cp:19991129
10.1111/j.1540-6261.1993.tb04702.x
10.1057/jdhf.2009.24
10.1016/0165-1889(88)90041-3
10.1109/ICNN.1995.488968
10.1145/1389095.1389267
10.1109/SIS.2005.1501646
10.1080/09603100110044236
10.1080/09603100500426432
10.1007/3-540-32849-1_2
10.1186/2251-712X-9-1
10.1108/01443589510076061
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright Wiley Periodicals Inc. Oct/Dec 2013
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Periodicals Inc. Oct/Dec 2013
DBID BSCLL
AAYXX
CITATION
JQ2
DOI 10.1002/isaf.1345
DatabaseName Istex
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 2160-0074
EndPage 231
ExternalDocumentID 3169324601
10_1002_isaf_1345
ISAF1345
ark_67375_WNG_L0W7MW3Z_F
Genre article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1XV
29J
31~
3WU
4ZD
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5VS
66C
702
7PT
7WY
7X1
8-0
8-1
8-3
8-4
8-5
8A9
8FE
8FL
8FW
8UM
8VB
930
A04
AABNI
AAESR
AAHQN
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AAXRX
AAYCA
AAZKR
ABCUV
ABSOO
ABUWG
ACAHQ
ACBKW
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADMGS
ADNMO
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFPM
AFGKR
AFKFF
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHBTC
AIDQK
AIDYY
AIQQE
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ANIOZ
ARAPS
ASTYK
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BEZIV
BMXJE
BNVMJ
BPHCQ
BQESF
BROTX
BRXPI
BSCLL
BY8
D-C
D-D
DCZOG
DJZPD
DR2
DRFUL
DRSSH
DWQXO
F00
F01
FRNLG
G-S
G.N
G50
GODZA
GROUPED_ABI_INFORM_RESEARCH
HBH
HCIFZ
HGLYW
HHY
HZ~
IX1
J0M
JPC
K1G
K6V
LATKE
LAW
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0C
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
NF~
O66
O9-
P2P
P2W
P2Y
P4C
P62
PALCI
Q.N
QB0
QRW
QWB
R.K
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WEBCB
WIH
WII
WOHZO
WQZ
WSUWO
WXSBR
XG1
XV2
ZL0
ZY4
ZZTAW
~IA
~WP
ALUQN
.4S
33P
4.4
5GY
8FG
8R4
8R5
AASGY
AAYXX
ABCQN
ABEML
ABIJN
ABJNI
ABLJU
ACSCC
ADKYN
ADZMN
AEGXH
AEYWJ
AFFHD
AFKRA
AGHNM
AKVCP
ALVPJ
ARCSS
ASPBG
AVWKF
AZQEC
BFHJK
BGLVJ
CCPQU
CITATION
DPXWK
EBO
EBS
EBU
EDO
EJD
FEDTE
GNUQQ
HF~
HVGLF
K60
K6~
K7-
MK~
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
Q11
Q2X
TUS
U5U
JQ2
ID FETCH-LOGICAL-c3355-d8b7550064ca669e10a15688b075a63c8152e0ef23dde52272c9b7de7aaba2a83
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000409834100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1550-1949
IngestDate Fri Jul 25 23:51:53 EDT 2025
Tue Nov 18 22:19:55 EST 2025
Sat Nov 29 08:01:17 EST 2025
Thu Sep 25 07:34:41 EDT 2025
Tue Nov 11 03:33:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3355-d8b7550064ca669e10a15688b075a63c8152e0ef23dde52272c9b7de7aaba2a83
Notes ArticleID:ISAF1345
istex:93768FFAF7BEDEA5CE36F5674677768FBF1D1391
ark:/67375/WNG-L0W7MW3Z-F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1471911104
PQPubID 29575
PageCount 25
ParticipantIDs proquest_journals_1471911104
crossref_citationtrail_10_1002_isaf_1345
crossref_primary_10_1002_isaf_1345
wiley_primary_10_1002_isaf_1345_ISAF1345
istex_primary_ark_67375_WNG_L0W7MW3Z_F
PublicationCentury 2000
PublicationDate 2013-10
October/December 2013
2013-10-00
20131001
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Intelligent systems in accounting, finance & management
PublicationTitleAlternate Intell. Sys. Acc. Fin. Mgmt
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Periodicals Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Periodicals Inc
References Chan E. 2009. Quantitative Trading: How to Build Your Own Algorithmic Trading Business. John Wiley & Sons, Inc.: Hoboken, NJ.
Lim G, Martin V. 1995. Regression-based cointegration estimators. Journal of Economic Studies 22(1): 3-22.
Triantafyllopoulos K, Montana G. 2009. Dynamic modelling of mean-reverting spreads for statistical arbitrage. Computational Management Science 8(1-2): 23-49.
Jegadeesh N, Titman S. 1993. Returns to buying winners and selling losers: implications for stock market efficiency. Journal of Finance 48(1): 65-91.
Butterworth D, Holmes P. 2002. Inter-market spread trading: evidence from UK index futures markets. Applied Financial Economics 12(11): 783-791.
Konstantinos T, Parsopolous E, Vrahatis MN. 2010. Particle Swarm Optimization and Intelligence: Advances and Applications. IGI Global: Hershey, PA; 149-164.
Dunis C, Laws J, Evans B. 2006. Trading futures spreads: an application of correlation and threshold filters. Applied Financial Economics 16(12): 903-914.
Johansen S. 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12(2-3): 231-254.
Eberhart R, Simpson P, Dobbins R. 1996. Computational Intelligence PC Tools. Academic Press: San Diego, CA.
Vidyamurthy G. 2004. Pairs Trading, Quantitative Methods and Analysis. John Wiley & Sons, Inc.: Hoboken, NJ.
Engle RF, Granger CW. 1987. Co-integration and error-correction: representation, estimation and testing. Econometrica 55: 251-276.
White H. 1989. Learning in Artificial Neural Networks: A Statistical Perspective. Neural Computation 1, 425-464.
Morgan JP. 1997. RiskMetrics Technical Document. Morgan Guaranty Trust Company: New York.
MacKinnon JG. 1996. Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics. 11, 601-618.
Ferreira C. 2006. Gene Expression Programming: Mathematical Modelling By An Artificial Intelligence. Springer: San Francisco, CA.
Niaki STA, Hoseinzade S. 2013. Forecasting S&P 500 index using artificial neural networks and design of experiments. Journal of Industrial Engineering International 9(1): article 1.
Dunis C, Laws J, Evans B. 2010. Trading and filtering futures spread portfolios: further applications of threshold and correlation filters. Journal of Derivatives and Hedge Funds 15(4): 274-287.
1993; 48
1987; 55
2010; 15
1989; 1
2011
2010
2002; 12
2006; 16
2009
1998
2002; 1
2008
1997
1996
1988; 12
2006
2005
2004
1999; 1
1995; 4
2013; 9
1999
1996; 11
2001
1995; 22
2009; 8
e_1_2_9_30_1
Li J (e_1_2_9_19_1) 2008
e_1_2_9_10_1
e_1_2_9_13_1
Aranha C (e_1_2_9_2_1) 2008
Ferreira C (e_1_2_9_11_1) 2006
Chan E (e_1_2_9_4_1) 2009
Park JW (e_1_2_9_24_1) 2002
Eberhart R (e_1_2_9_9_1) 1996
e_1_2_9_14_1
e_1_2_9_17_1
Santini M (e_1_2_9_25_1) 2001
e_1_2_9_16_1
Mohaghegi S (e_1_2_9_22_1) 2005
e_1_2_9_20_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_3_1
Iba H (e_1_2_9_12_1) 1999
Chen Z (e_1_2_9_5_1) 2009
Triantafyllopoulos K (e_1_2_9_27_1) 2009; 8
Koza JR (e_1_2_9_18_1) 1998
e_1_2_9_26_1
e_1_2_9_28_1
Morgan JP (e_1_2_9_15_1) 1997
Vidyamurthy G (e_1_2_9_29_1) 2004
References_xml – reference: Konstantinos T, Parsopolous E, Vrahatis MN. 2010. Particle Swarm Optimization and Intelligence: Advances and Applications. IGI Global: Hershey, PA; 149-164.
– reference: Butterworth D, Holmes P. 2002. Inter-market spread trading: evidence from UK index futures markets. Applied Financial Economics 12(11): 783-791.
– reference: Niaki STA, Hoseinzade S. 2013. Forecasting S&P 500 index using artificial neural networks and design of experiments. Journal of Industrial Engineering International 9(1): article 1.
– reference: White H. 1989. Learning in Artificial Neural Networks: A Statistical Perspective. Neural Computation 1, 425-464.
– reference: Johansen S. 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12(2-3): 231-254.
– reference: Triantafyllopoulos K, Montana G. 2009. Dynamic modelling of mean-reverting spreads for statistical arbitrage. Computational Management Science 8(1-2): 23-49.
– reference: Vidyamurthy G. 2004. Pairs Trading, Quantitative Methods and Analysis. John Wiley & Sons, Inc.: Hoboken, NJ.
– reference: Jegadeesh N, Titman S. 1993. Returns to buying winners and selling losers: implications for stock market efficiency. Journal of Finance 48(1): 65-91.
– reference: Dunis C, Laws J, Evans B. 2006. Trading futures spreads: an application of correlation and threshold filters. Applied Financial Economics 16(12): 903-914.
– reference: Lim G, Martin V. 1995. Regression-based cointegration estimators. Journal of Economic Studies 22(1): 3-22.
– reference: Dunis C, Laws J, Evans B. 2010. Trading and filtering futures spread portfolios: further applications of threshold and correlation filters. Journal of Derivatives and Hedge Funds 15(4): 274-287.
– reference: MacKinnon JG. 1996. Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics. 11, 601-618.
– reference: Chan E. 2009. Quantitative Trading: How to Build Your Own Algorithmic Trading Business. John Wiley & Sons, Inc.: Hoboken, NJ.
– reference: Morgan JP. 1997. RiskMetrics Technical Document. Morgan Guaranty Trust Company: New York.
– reference: Engle RF, Granger CW. 1987. Co-integration and error-correction: representation, estimation and testing. Econometrica 55: 251-276.
– reference: Ferreira C. 2006. Gene Expression Programming: Mathematical Modelling By An Artificial Intelligence. Springer: San Francisco, CA.
– reference: Eberhart R, Simpson P, Dobbins R. 1996. Computational Intelligence PC Tools. Academic Press: San Diego, CA.
– year: 2011
– start-page: 6281
  year: 2008
  end-page: 6286
– start-page: 1053
  year: 1999
  end-page: 1060
– year: 2009
– volume: 1
  start-page: 425
  year: 1989
  end-page: 464
  article-title: Learning in Artificial Neural Networks: A Statistical Perspective
  publication-title: Neural Computation
– volume: 48
  start-page: 65
  issue: 1
  year: 1993
  end-page: 91
  article-title: Returns to buying winners and selling losers: implications for stock market efficiency
  publication-title: Journal of Finance
– start-page: 873
  year: 2008
  end-page: 880
– volume: 8
  start-page: 23
  issue: 1–2
  year: 2009
  end-page: 49
  article-title: Dynamic modelling of mean‐reverting spreads for statistical arbitrage
  publication-title: Computational Management Science
– volume: 1
  start-page: IEEE 274
  year: 2002
  end-page: 279
  article-title: Comparison of MLP and RBF neural networks using deviation signals for on‐line identification of a synchronous generator
– start-page: 362
  year: 2009
  end-page: 364
– start-page: 381
  year: 2005
  end-page: 384
– year: 1996
– volume: 1
  start-page: 323
  year: 1999
  end-page: 328
– volume: 55
  start-page: 251
  year: 1987
  end-page: 276
  article-title: Co‐integration and error‐correction: representation, estimation and testing
  publication-title: Econometrica
– year: 2010
– start-page: 149
  year: 2010
  end-page: 164
– volume: 11
  start-page: 601
  year: 1996
  end-page: 618
  article-title: Numerical distribution functions for unit root and cointegration tests
  publication-title: Journal of Applied Econometrics
– volume: 12
  start-page: 783
  issue: 11
  year: 2002
  end-page: 791
  article-title: Inter‐market spread trading: evidence from UK index futures markets
  publication-title: Applied Financial Economics
– start-page: 361
  year: 2001
  end-page: 370
– volume: 16
  start-page: 903
  issue: 12
  year: 2006
  end-page: 914
  article-title: Trading futures spreads: an application of correlation and threshold filters
  publication-title: Applied Financial Economics
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
– year: 2006
– year: 2004
– year: 1997
– volume: 12
  start-page: 231
  issue: 2–3
  year: 1988
  end-page: 254
  article-title: Statistical analysis of cointegration vectors
  publication-title: Journal of Economic Dynamics and Control
– start-page: 29
  year: 1998
  end-page: 43
– volume: 9
  issue: 1
  year: 2013
  article-title: Forecasting S&P 500 index using artificial neural networks and design of experiments
  publication-title: Journal of Industrial Engineering International
– volume: 22
  start-page: 3
  issue: 1
  year: 1995
  end-page: 22
  article-title: Regression‐based cointegration estimators
  publication-title: Journal of Economic Studies
– volume: 15
  start-page: 274
  issue: 4
  year: 2010
  end-page: 287
  article-title: Trading and filtering futures spread portfolios: further applications of threshold and correlation filters
  publication-title: Journal of Derivatives and Hedge Funds
– start-page: 6281
  volume-title: Proceedings of the 7th World Congress on Intelligent Control and Automation
  year: 2008
  ident: e_1_2_9_19_1
– start-page: 362
  volume-title: IITA'09 Proceedings of the 3rd International Conference on Intelligent Information Technology Application
  year: 2009
  ident: e_1_2_9_5_1
– ident: e_1_2_9_17_1
  doi: 10.4018/978-1-61520-666-7.ch006
– ident: e_1_2_9_28_1
– ident: e_1_2_9_10_1
  doi: 10.2307/1913236
– ident: e_1_2_9_30_1
  doi: 10.1162/neco.1989.1.4.425
– start-page: 29
  volume-title: Encyclopedia of Computer Science and Technology
  year: 1998
  ident: e_1_2_9_18_1
– ident: e_1_2_9_21_1
  doi: 10.1002/(SICI)1099-1255(199611)11:6<601::AID-JAE417>3.0.CO;2-T
– ident: e_1_2_9_26_1
  doi: 10.1049/cp:19991129
– volume-title: RiskMetrics Technical Document
  year: 1997
  ident: e_1_2_9_15_1
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1540-6261.1993.tb04702.x
– ident: e_1_2_9_7_1
  doi: 10.1057/jdhf.2009.24
– start-page: 1053
  volume-title: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99)
  year: 1999
  ident: e_1_2_9_12_1
– ident: e_1_2_9_14_1
  doi: 10.1016/0165-1889(88)90041-3
– volume: 8
  start-page: 23
  issue: 1
  year: 2009
  ident: e_1_2_9_27_1
  article-title: Dynamic modelling of mean‐reverting spreads for statistical arbitrage
  publication-title: Computational Management Science
– volume-title: Quantitative Trading: How to Build Your Own Algorithmic Trading Business
  year: 2009
  ident: e_1_2_9_4_1
– ident: e_1_2_9_16_1
  doi: 10.1109/ICNN.1995.488968
– volume-title: Pairs Trading, Quantitative Methods and Analysis
  year: 2004
  ident: e_1_2_9_29_1
– start-page: 873
  volume-title: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation (Atlanta, GA, USA, July 12–16, 2008)
  year: 2008
  ident: e_1_2_9_2_1
  doi: 10.1145/1389095.1389267
– start-page: 381
  volume-title: Proceedings of the IEEE Swarm Intelligence Symposium, 2005. SIS 20005
  year: 2005
  ident: e_1_2_9_22_1
  doi: 10.1109/SIS.2005.1501646
– ident: e_1_2_9_8_1
– ident: e_1_2_9_3_1
  doi: 10.1080/09603100110044236
– ident: e_1_2_9_6_1
  doi: 10.1080/09603100500426432
– volume-title: Gene Expression Programming: Mathematical Modelling By An Artificial Intelligence
  year: 2006
  ident: e_1_2_9_11_1
  doi: 10.1007/3-540-32849-1_2
– ident: e_1_2_9_23_1
  doi: 10.1186/2251-712X-9-1
– volume-title: Computational Intelligence PC Tools
  year: 1996
  ident: e_1_2_9_9_1
– start-page: IEEE
  volume-title: IEEE Power Engineering Society Winter Meeting
  year: 2002
  ident: e_1_2_9_24_1
– ident: e_1_2_9_20_1
  doi: 10.1108/01443589510076061
– start-page: 361
  volume-title: EuroGP '01 Proceedings of the 4th European Conference on Genetic Programming
  year: 2001
  ident: e_1_2_9_25_1
SSID ssj0029204
Score 1.9231538
Snippet SUMMARY This paper models and forecasts the Gold Miner Spread from 23 May 2006 to 30 June 2011. The Gold Miner Spread acts as a suitable performance indicator...
This paper models and forecasts the Gold Miner Spread from 23 May 2006 to 30 June 2011. The Gold Miner Spread acts as a suitable performance indicator for the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 207
SubjectTerms correlation filter
Forecasting techniques
Genetic algorithms
genetic programming algorithm
Gold
Gold markets
multilayer perceptron neural network
Neural networks
particle swarm optimization
radial basis function neural network
Spread
spread trading
Stochastic models
Studies
Title NONLINEAR FORECASTING OF THE GOLD MINER SPREAD: AN APPLICATION OF CORRELATION FILTERS
URI https://api.istex.fr/ark:/67375/WNG-L0W7MW3Z-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fisaf.1345
https://www.proquest.com/docview/1471911104
Volume 20
WOSCitedRecordID wos000409834100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2160-0074
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029204
  issn: 1550-1949
  databaseCode: DRFUL
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7SZpS9rOvasmzdEGWMvrhxLDuS2ieTxGnAcUJ-NKEvQnZkKC1pSdqyP78nx_ZaaGGwNxufsLjTj-8Tp-8AfrE0dm3tcYsKT1sutz2LL7hGzsMVc5UtVCZWfRmyKOLzuRhW4Ly4C7PRhygP3MzMyNZrM8FVvK7_FQ29Xqv0tEFdbwuq5lIVMq9qexRMw5JvCSerHmhAuIVcXRTCQrZTLxu_2o6qxrN_XmHNl4g123KC3f_q7Gf4lCNN4m-Gxh5U9PIL7BSJ7vswjQZR2Is6_oggE-y0_PGkF3XJICCTiw7pDsI26ePnERljlPz2GfEj4g-HxdVjY9gajEzJjew16IWIjMcHMA06k9aFlRdZsBKKWMNa8JihgxCZJKrZFLphK6R0nMeIJVSTJhw3eG3r1KG4ECJYY04iYrbQTKlYOYrTQ9he3i31VyAscRiPGzTlIkGc4MZKc3OwRD0jQiPSGpwUvpZJrkBuCmHcyo12siONm6RxUw2OS9P7jezGW0a_s4CVFmp1Y_LUmCdnUVeG9oz1Z_RKBjU4KiIq8ym6Rs7DGmalt13sVxa79_8ke2M_MA_f_t30O3x0TOmMLPHvCLYfVo_6B3xInh6u16uf-Vh9BqOY4uw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED7SZLR72dZ2o9myVpQx-uLVsexIKn0xSZyEOU7Ij6bsRciODGUjG0k3-uf35NjeCisU-mbjExZ30t13h_QdwCeWxq6tPW5R4WnL5bZn8SXXmPNwxVxlC5WRVV-FLIr49bUYV-CyuAuz5YcoC25mZ2T-2mxwU5A-_8saerNR6Zcmdb0dqLktyngVap1JMA_LhEs4WftAg8ItTNZFwSxkO-fl4AfxqGZUe_cAbP4LWbOYE7x-3mzfwKscaxJ_uzj2oaJXB7BbHHU_hHk0isJB1PUnBHPBbtufzgZRj4wCMut3SW8UdsgQP0_IFO3kdy6IHxF_PC4uHxvB9mhimm5kr8EgRGw8fQvzoDtr9628zYKVUEQb1pLHDDWE2CRRrZbQTVthUsd5jGhCtWjCMcRrW6cORVeIcI05iYjZUjOlYuUoTt9BdfVzpY-AsMRhPG7SlIsEkYIbK81NaYl6hoZGpHU4K5Qtk5yD3LTC-CG37MmONGqSRk11OC1Ff22JN_4n9DmzWCmh1t_NSTXmyUXUk6G9YMMF_SaDOjQKk8p8k24w62FN4-ttF-eVGe_xP8nB1A_Mw_uni57AXn82DCVa8usHeOmYRhrZMcAGVG_Xv_VHeJH8ub3ZrI_zhXsPWtnm3A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_apJS9bP1k2bpWlFL64tax7EgaezFJnIa6TshHE_oiZEeG0pKVpBv783dybG-FFgp9s_EJizvd6Xfi9DuAE5bGrq09blHhacvltmfxGdeY83DFXGULlZFV34Qsivh0Kvpr8KO4C7PihygP3IxnZPHaOLh-nKUX_1hD75YqPa9T11uHqusJz61AtTUIxmGZcAknax9oULiFyboomIVs56Ic_Gw_qhrV_nkGNv-HrNmeE3x632y34GOONYm_WhzbsKbnO7BZlLrvwjjqRWE3avsDgrlgu-kPR92oQ3oBGV22SacXtsg1fh6QIdrJb30nfkT8fr-4fGwEm72BabqRvQbdELHxcA_GQXvUvLTyNgtWQhFtWDMeM9QQYpNENRpC122FSR3nMaIJ1aAJxy1e2zp1KIZChGvMSUTMZpopFStHcboPlfnPuf4MhCUO43GdplwkiBTcWGlujpaoZ2hoRFqDs0LZMsk5yE0rjAe5Yk92pFGTNGqqwXEp-rgi3nhJ6DSzWCmhFvemUo15chJ1ZGhP2PWE3sqgBgeFSWXupEvMeljdxHrbxXllxnv9T7I79APz8OXtokew2W8FEg159RU-OKaPRlYFeACVp8Uv_Q02kt9Pd8vFYb5u_wIGweZX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NONLINEAR+FORECASTING+OF+THE+GOLD+MINER+SPREAD%3A+AN+APPLICATION+OF+CORRELATION+FILTERS&rft.jtitle=Intelligent+systems+in+accounting%2C+finance+%26+management&rft.au=Dunis%2C+Christian+L.&rft.au=Laws%2C+Jason&rft.au=Middleton%2C+Peter+W.&rft.au=Karathanasopoulos%2C+Andreas&rft.date=2013-10-01&rft.issn=1550-1949&rft.eissn=2160-0074&rft.volume=20&rft.issue=4&rft.spage=207&rft.epage=231&rft_id=info:doi/10.1002%2Fisaf.1345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_isaf_1345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-1949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-1949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-1949&client=summon