Enhanced Self‐Healing in Dual Network Entangled Hydrogels by Macromolecular Architecture and Alignment of Surface Functionalized hBN Nanosheets

Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and rest...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials interfaces Ročník 12; číslo 6
Hlavní autoři: Ratwani, Chirag R., Donato, Katarzyna Z., Grebenchuk, Sergey, Mija, Alice, Novoselov, Kostya S., Abdelkader, Amr M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim John Wiley & Sons, Inc 01.03.2025
Wiley-VCH
Témata:
ISSN:2196-7350, 2196-7350
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains. This work presents a novel dual‐network hydrogel utilizing surface‐functionalized hBN nanosheets and directional freezing to create anisotropic channels. This alignment helps direct the polymer chain movement, achieving a 92% self‐healing efficiency and superior mechanical strength compared to conventional isotropic hydrogels.
AbstractList Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains. This work presents a novel dual‐network hydrogel utilizing surface‐functionalized hBN nanosheets and directional freezing to create anisotropic channels. This alignment helps direct the polymer chain movement, achieving a 92% self‐healing efficiency and superior mechanical strength compared to conventional isotropic hydrogels.
Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains.
Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains.
Abstract Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains.
Author Donato, Katarzyna Z.
Grebenchuk, Sergey
Novoselov, Kostya S.
Ratwani, Chirag R.
Abdelkader, Amr M.
Mija, Alice
Author_xml – sequence: 1
  givenname: Chirag R.
  orcidid: 0000-0002-8653-2168
  surname: Ratwani
  fullname: Ratwani, Chirag R.
  email: cratwani@bournemouth.ac.uk
  organization: Bournemouth University
– sequence: 2
  givenname: Katarzyna Z.
  orcidid: 0000-0002-8103-2420
  surname: Donato
  fullname: Donato, Katarzyna Z.
  organization: Charles University
– sequence: 3
  givenname: Sergey
  surname: Grebenchuk
  fullname: Grebenchuk, Sergey
  organization: National University of Singapore
– sequence: 4
  givenname: Alice
  surname: Mija
  fullname: Mija, Alice
  organization: UMR CNRS 7272
– sequence: 5
  givenname: Kostya S.
  surname: Novoselov
  fullname: Novoselov, Kostya S.
  organization: National University of Singapore
– sequence: 6
  givenname: Amr M.
  surname: Abdelkader
  fullname: Abdelkader, Amr M.
  email: aabdelkader@bournemouth.ac.uk
  organization: UMR CNRS 7272
BookMark eNqFUU1vEzEQXaEiUUqvnC1xTvDHrr17DG1KIrXhUDivZr3jxMGxi9erKj3xE-hf7C_BIahCXHqa0eh9aN57W5z44LEo3jM6ZZTyj9Dv7JRTXlIqG_aqOOWskRMlKnryz_6mOB-GLaWUMc54LU6Lx7nfgNfYk1t05unnrwWCs35NrCeXIziywnQf4ncy9wn82mXgYt_HsEY3kG5PbkDHsAsO9eggklnUG5tQpzEiAd-TmbNrv0OfSDDkdowGNJKr0etkg89OD1lw82lFVuDDsEFMw7vitQE34PnfeVZ8u5p_vVhMrr98Xl7MridaiIpPOlM1dVkCGi2U1LzuZSONNnVfdQoYNkaKui6bBqlSVEitqpqXKkMEqhySOCuWR90-wLa9i3YHcd8GsO2fQ4jrFmKy2mGrGFDaGVWC1Nmyh84ILpteMVObshNZ68NR6y6GHyMOqd2GMeb_hlYwVctaCkkzanpE5ciGIaJ5dmW0PbTYHlpsn1vMhPI_grYJDsmlCNa9SLu3DvcvmLSzy5slKysufgP4h7Tt
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2025_109241
crossref_primary_10_1016_j_snb_2025_138505
crossref_primary_10_1002_sus2_70028
crossref_primary_10_1007_s41127_024_00085_7
Cites_doi 10.1021/acsnano.6b04482
10.1021/acsami.3c16115
10.1002/pat.5467
10.1016/j.compositesb.2021.108661
10.1038/s41699-021-00231-2
10.1016/j.jallcom.2022.165801
10.1021/acsnano.3c02897
10.1039/C7TC04300G
10.1016/j.fpsl.2018.06.003
10.1021/am404497n
10.3390/colloids4040054
10.1016/j.pmatsci.2022.101001
10.1088/1361-6528/abce2e
10.1016/j.porgcoat.2022.107209
10.1039/C6RA02166B
10.3390/gels8090555
10.1021/nn5014808
10.1039/D1SM01361K
10.1016/S0039-6028(96)01591-9
10.3390/polym13213782
10.1002/pc.24518
10.1039/C4TA01464B
10.1002/smll.201303236
10.1016/j.jddst.2021.102914
10.1177/0748233718817180
10.1002/smll.202207081
10.1007/s41127-024-00077-7
10.1016/j.eurpolymj.2021.110974
10.1002/adem.200700274
10.1016/j.matchemphys.2023.128243
10.1021/acsanm.4c03056
10.1002/jbm.a.36841
10.1021/acs.nanolett.5b01842
10.1039/C8RA00340H
10.1021/acs.chemrev.0c01177
10.1016/j.matdes.2020.109094
10.1016/j.triboint.2023.108264
10.1021/acsnano.6b08408
10.3390/polym11121952
10.1002/mame.202200332
10.1002/smll.201001628
10.1007/s10853-020-04842-w
10.1016/j.eurpolymj.2019.109465
10.1021/mz300451r
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOA
DOI 10.1002/admi.202400691
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_71a00bf74a6c44adabf3269d71f8f4b3
10_1002_admi_202400691
ADMI1452
Genre article
GrantInformation_xml – fundername: UCAJ.E.D.I.
  funderid: ANR‐15‐IDEX‐01
– fundername: Ministry of Education, Singapore
  funderid: EDUNC‐33‐18‐279‐V12
– fundername: Royal Society
  funderid: RSRP∖R∖190000
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AFPKN
AIACR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BENPR
BGLVJ
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7S
MEWTI
MY~
M~E
O9-
P2W
PDBOC
PHGZT
PTHSS
R.K
ROL
WBKPD
WOHZO
WXSBR
ZZTAW
AAFWJ
AAMMB
AAYXX
ABJNI
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
AIURR
BFHJK
CITATION
EJD
PHGZM
PQGLB
SUPJJ
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3352-bf59844aefc376c28d696fcf8d5b7a1e9f6388499e077036c7582476fc3e70063
IEDL.DBID DOA
ISSN 2196-7350
IngestDate Fri Oct 03 12:53:32 EDT 2025
Sat Jul 12 03:27:57 EDT 2025
Sat Nov 29 07:17:49 EST 2025
Tue Nov 18 20:57:42 EST 2025
Thu Mar 20 09:30:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3352-bf59844aefc376c28d696fcf8d5b7a1e9f6388499e077036c7582476fc3e70063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8103-2420
0000-0002-8653-2168
OpenAccessLink https://doaj.org/article/71a00bf74a6c44adabf3269d71f8f4b3
PQID 3178686360
PQPubID 2034582
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_71a00bf74a6c44adabf3269d71f8f4b3
proquest_journals_3178686360
crossref_primary_10_1002_admi_202400691
crossref_citationtrail_10_1002_admi_202400691
wiley_primary_10_1002_admi_202400691_ADMI1452
PublicationCentury 2000
PublicationDate 20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 20250301
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 5
2015; 15
2021; 5
2022; 173
2023; 180
2021; 66
2023; 17
2019; 11
2019; 35
2023; 19
1997; 375
2016; 10
2022; 918
2023; 308
2020; 55
2020; 124
2021; 121
2024
2024; 16
2020; 108
2011; 7
2021; 13
2022; 164
2016; 6
2018; 39
2018; 8
2018; 17
2020; 4
2021; 32
2012; 1
2014; 2
2023; 131
2021; 211
2020; 196
2024; 7
2017; 11
2022; 8
2024; 9
2007; 9
2014; 8
2014; 6
2022; 18
2014; 10
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Barkan T. (e_1_2_8_23_1) 2024
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 131
  year: 2023
  publication-title: Prog. Mater. Sci.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 35
  start-page: 79
  year: 2019
  publication-title: Toxicol. Industr. Health
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 1
  start-page: 1233
  year: 2012
  publication-title: ACS Macro Lett.
– volume: 308
  year: 2023
  publication-title: Mater. Chem. Phys.
– volume: 5
  start-page: 56
  year: 2021
  publication-title: npj 2D Mater. Appl.
– volume: 6
  start-page: 1632
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 121
  year: 2021
  publication-title: Chemical Reviews
– volume: 7
  year: 2024
  publication-title: ACS Appl. Nano Mater.
– volume: 39
  year: 2018
  publication-title: Polym. Compos.
– volume: 8
  start-page: 555
  year: 2022
  publication-title: Gels
– volume: 308
  year: 2023
  publication-title: Macromol. Mater. Eng.
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 13
  start-page: 3782
  year: 2021
  publication-title: Polymers
– volume: 8
  start-page: 6123
  year: 2014
  publication-title: ACS Nano
– volume: 124
  year: 2020
  publication-title: Eur. Polym. J.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 375
  start-page: L385
  year: 1997
  publication-title: Surf. Sci.
– volume: 9
  start-page: 1089
  year: 2007
  publication-title: Adv. Eng. Mater.
– volume: 211
  year: 2021
  publication-title: Composites, Part B
– volume: 10
  start-page: 2352
  year: 2014
  publication-title: Small
– volume: 15
  start-page: 5449
  year: 2015
  publication-title: Nano Lett.
– volume: 164
  year: 2022
  publication-title: Eur. Polym. J.
– volume: 7
  start-page: 465
  year: 2011
  publication-title: Small
– volume: 55
  year: 2020
  publication-title: J. Mater. Sci.
– volume: 173
  year: 2022
  publication-title: Prog. Org. Coat.
– volume: 32
  start-page: 4745
  year: 2021
  publication-title: Polym. Adv. Technol.
– year: 2024
  publication-title: Nat. Rev. Phys.
– volume: 4
  start-page: 54
  year: 2020
  publication-title: Coll. Interfaces
– volume: 196
  year: 2020
  publication-title: Mater. Des.
– volume: 18
  start-page: 859
  year: 2022
  publication-title: Soft Matter
– volume: 32
  year: 2021
  publication-title: Nanotechnology
– volume: 17
  start-page: 9681
  year: 2023
  publication-title: ACS Nano
– volume: 11
  start-page: 3742
  year: 2017
  publication-title: ACS Nano
– volume: 11
  start-page: 1952
  year: 2019
  publication-title: Polymers
– volume: 19
  year: 2023
  publication-title: Small
– volume: 16
  start-page: 5847
  year: 2024
  publication-title: ACS Appl. Mater. Interfaces
– volume: 108
  start-page: 614
  year: 2020
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 10
  start-page: 9434
  year: 2016
  publication-title: ACS Nano
– volume: 66
  year: 2021
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 918
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 9
  start-page: 3
  year: 2024
  publication-title: Graph. 2D Mater.
– volume: 17
  start-page: 99
  year: 2018
  publication-title: Food Packag. Shelf Life
– volume: 180
  year: 2023
  publication-title: Tribol. Int.
– ident: e_1_2_8_34_1
  doi: 10.1021/acsnano.6b04482
– ident: e_1_2_8_43_1
  doi: 10.1021/acsami.3c16115
– ident: e_1_2_8_30_1
  doi: 10.1002/pat.5467
– ident: e_1_2_8_13_1
  doi: 10.1016/j.compositesb.2021.108661
– ident: e_1_2_8_27_1
  doi: 10.1038/s41699-021-00231-2
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jallcom.2022.165801
– ident: e_1_2_8_4_1
  doi: 10.1021/acsnano.3c02897
– ident: e_1_2_8_25_1
  doi: 10.1039/C7TC04300G
– ident: e_1_2_8_36_1
  doi: 10.1016/j.fpsl.2018.06.003
– ident: e_1_2_8_38_1
  doi: 10.1021/am404497n
– ident: e_1_2_8_3_1
  doi: 10.3390/colloids4040054
– ident: e_1_2_8_6_1
  doi: 10.1016/j.pmatsci.2022.101001
– ident: e_1_2_8_41_1
  doi: 10.1088/1361-6528/abce2e
– ident: e_1_2_8_31_1
  doi: 10.1016/j.porgcoat.2022.107209
– ident: e_1_2_8_9_1
  doi: 10.1039/C6RA02166B
– ident: e_1_2_8_12_1
  doi: 10.3390/gels8090555
– ident: e_1_2_8_24_1
  doi: 10.1021/nn5014808
– ident: e_1_2_8_28_1
  doi: 10.1039/D1SM01361K
– ident: e_1_2_8_37_1
  doi: 10.1016/S0039-6028(96)01591-9
– ident: e_1_2_8_5_1
  doi: 10.3390/polym13213782
– ident: e_1_2_8_10_1
  doi: 10.1002/pc.24518
– ident: e_1_2_8_19_1
  doi: 10.1039/C4TA01464B
– ident: e_1_2_8_39_1
  doi: 10.1002/smll.201303236
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jddst.2021.102914
– ident: e_1_2_8_20_1
  doi: 10.1177/0748233718817180
– ident: e_1_2_8_15_1
  doi: 10.1002/smll.202207081
– ident: e_1_2_8_21_1
  doi: 10.1007/s41127-024-00077-7
– ident: e_1_2_8_7_1
  doi: 10.1016/j.eurpolymj.2021.110974
– ident: e_1_2_8_11_1
  doi: 10.1002/adem.200700274
– ident: e_1_2_8_42_1
  doi: 10.1016/j.matchemphys.2023.128243
– ident: e_1_2_8_16_1
  doi: 10.1021/acsanm.4c03056
– ident: e_1_2_8_22_1
  doi: 10.1002/jbm.a.36841
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.nanolett.5b01842
– ident: e_1_2_8_33_1
  doi: 10.1039/C8RA00340H
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.chemrev.0c01177
– ident: e_1_2_8_17_1
  doi: 10.1016/j.matdes.2020.109094
– ident: e_1_2_8_26_1
  doi: 10.1016/j.triboint.2023.108264
– ident: e_1_2_8_32_1
  doi: 10.1021/acsnano.6b08408
– ident: e_1_2_8_44_1
  doi: 10.3390/polym11121952
– ident: e_1_2_8_18_1
  doi: 10.1002/mame.202200332
– ident: e_1_2_8_40_1
  doi: 10.1002/smll.201001628
– ident: e_1_2_8_29_1
  doi: 10.1007/s10853-020-04842-w
– year: 2024
  ident: e_1_2_8_23_1
  publication-title: Nat. Rev. Phys.
– ident: e_1_2_8_35_1
  doi: 10.1016/j.eurpolymj.2019.109465
– ident: e_1_2_8_8_1
  doi: 10.1021/mz300451r
SSID ssj0001121283
Score 2.3425071
Snippet Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their...
Abstract Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Advanced materials
Alignment
anisotropic hydrogels
Biomedical materials
Biopolymers
directional freezing
Flexible components
Healing
hexagonal boron nitride
Hydrogels
Mechanical properties
Modulus of elasticity
Nanocomposites
Nanosheets
Polyvinyl alcohol
Safety barriers
self‐healing
Structural integrity
surface functionalization
Tensile strength
Tissue engineering
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQAYkLb8RCQT4gcYoaP2I7xy3dVTl0Vakg9RY5fuxG2iYo2UVqT_0J8Bf5JYyd7Hb3gBDikEs0thzbM_PZmfkGoQ9wPgMUWrKEcVomXFGTaG5tAo-0zJBUORWLTcjZTF1e5uc7Wfw9P8T2wi1oRrTXQcF12R3dkYZqe1XB-S7EQIqQvn6fEKZC8QbKz-9uWQiY5sjFCZopEsmydMPcmNKj_S72PFMk8N9DnbvYNTqf6ZP_H_ZT9HgAnnjc75Rn6J6rn6OHMQDUdC_Qz0m9iMEA-MIt_a_bHyE_Cdwarmp8soaGsz5eHE9qgJPzJQieXtu2mYNvxeU1PtMxsG-otYvHO_8nsK4tHi-reQw8wI3HF-vWa-PwFJxqfxdZ3UCHi-MZBmvfdAvnVt1L9HU6-fLpNBnKNSQmJG4lpc9yxbl23oDVMlRZkQtvvLJZKTVxuQddV3DCcqkMtF8GNgnlEkSYkwEqvUIHdVO71wjnTruUaCo8I1xnWhumqRUiNBaGkRFKNktVmIHLPJTUWBY9CzMtwjQX22keoY9b-W89i8cfJY_Dym-lAvt2fNG082JQ5kISnaall1wLAx9sdekBBedWEq88L9kIHW72TTGYhK4AoKaECvRsMPq4Q_4ylGJ8cvaZ8Iy--Uf5t-gRDVWKY6TcITpYtWv3Dj0w31dV176PCvIbv2QSqQ
  priority: 102
  providerName: Wiley-Blackwell
Title Enhanced Self‐Healing in Dual Network Entangled Hydrogels by Macromolecular Architecture and Alignment of Surface Functionalized hBN Nanosheets
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202400691
https://www.proquest.com/docview/3178686360
https://doaj.org/article/71a00bf74a6c44adabf3269d71f8f4b3
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: KB.
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2196-7350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001121283
  issn: 2196-7350
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgAYkL4ldbWCofkDiFjR3HcY4tm2oR2qiiIK24WI5_2kglRU2LtBwQjwCvyJMwdtKqe0B74RAfoklkecaeb-zxNwi9gvgMUGiVRAmjVcQE1ZFixkTwZCbRJBZWhGITWVmKy8t8elDqy-eEdfTA3cCdZkTFceUyprhmTBlVOUAcucmIE45VgecTUM9BMBV2VwgsySLZsTTG9FSZLzWEgz5lkufkmhcKZP3XEOYhTg2OZvIQPegRIh51PXuEbtnmMboXMjV1-wT9LppFOLXHM7t0f37-8heJwP_gusFnW_iw7BK7cdEA7psvQfD8yqxXc3CCuLrCFypk4PVFcfHo4CABq8bg0bKehwwBvHJ4tl07pS2egPfrNg3r7_DDxbjEsCyv2oW1m_Yp-jQpPr49j_q6CpH2N6yiyqW5gLG0TsPyoqkwPOdOO2HSKlPE5g4mpYBQyMaZ5-fSoE3KMhBJbOYxzTN01Kwae4xwbpWNiaLcJYSpVCmdKGo49x9znZABinbjLHVPOu5rXyxlR5dMpdeL3OtlgF7v5b92dBv_lBx7te2lPE12eAHGI3vjkTcZzwCd7JQu-7nbSkBUggvPowa9D4ZwQ1fk6OziHWEpff4_-vQC3ae-xnDIcztBR5v11r5Ed_W3Td2uh-g2ZdMhujMuyumHYTB6aN-P3wx91urMtz8KaKfp57_YnglS
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQALEL34jCAB-QOEVLHMd2jh1r1Yk1mrQh7WY5_mgjlRQl7aRx4k-Af5G_hGcn7dYDQkgccomeLcd-X3557_cQeg_3M_BCyzRKKSkjKoiOFDUmgoebVCexsCI0m-BFIS4v87M-m9DXwnT4ENuAm5eMoK-9gPuA9OENaqgyXyq44PkkSObr1-9SMDWe1Qk9uwmzJKCbAxgniCaLeJrFG-jGmBzuTrFjmgKC_47bedt5DdZn_Og_rPsxeti7nnjY8coTdMfWT9H9kAKq22fo56ieh3QAfG4X7tf3H75CCQwbrmp8vIaBRZcxjkc1OJSzBRBOrk2znIF1xeU1nqqQ2td328XDW38osKoNHi6qWUg9wEuHz9eNU9riMZjVLhpZfYMJ50cFBn2_bOfWrtrn6PN4dPFxEvUNGyLtS7ei0mW5oFRZp0FvaSIMy5nTTpis5CqxuQNpF3DHsjH3wF8a2IRQDiSp5d5ZeoH26mVtXyKcW2XjRBHm0oSqTCmdKmIY84OZTpMBijZnJXWPZu6baixkh8NMpN9mud3mAfqwpf_a4Xj8kfLIH_2WyuNvhxfLZiZ7cZY8UXFcOk4V0_DBRpUO_ODc8MQJR8t0gA42jCN7pdBKcNUEEx6gDVYfWOQvS5HD4-lJQjPy6h_p36EHk4vpqTw9KT69RvvE9ywOeXMHaG_VrO0bdE9fraq2eRuk5TcegxaU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQuIgX7hOFAX5A4ila4ji289jRVptgVaWBtDfL8aWNVJIpaZG2p_0E-Iv8Eo6dtFsfEELiIS_RseXY5_LZOf4OQu9hfwYotEijlJIiooLoSFFjIni4SXUSCytCsQk-nYrz83zWZxP6uzAdP8T2wM1bRvDX3sDthXGHN6yhynwrYYPnkyCZv79-l2Y88YpN6OzmmCUB3xzIOME0WcTTLN5QN8bkcLeLndAUGPx3YOdt8Bqiz-Txfxj3E_Soh5542OnKU3THVs_Q_ZACqtvn6Oe4WoR0AHxml-7X9Q9_QwkCGy4rPFpDw2mXMY7HFQDK-RIEjy9NU88huuLiEp-qkNrXV9vFw1t_KLCqDB4uy3lIPcC1w2frxilt8QTCancaWV5Bh4ujKQZ_X7cLa1ftC_R1Mv7y8TjqCzZE2l_digqX5YJSZZ0Gv6WJMCxnTjthsoKrxOYOrF3AHsvG3BN_aVATQjmIpJZ7sLSP9qq6si8Rzq2ycaIIc2lCVaaUThUxjPnGTKfJAEWbtZK6ZzP3RTWWsuNhJtJPs9xO8wB92MpfdDwef5Q88ku_lfL82-FF3cxlb86SJyqOC8epYho-2KjCAQ7ODU-ccLRIB-hgoziydwqtBKgmmPAEbTD6oCJ_GYocjk5PEpqRV_8o_w49mI0m8vPJ9NNr9JD4ksUhbe4A7a2atX2D7unvq7Jt3gZj-Q2lDxYY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Self%E2%80%90Healing+in+Dual+Network+Entangled+Hydrogels+by+Macromolecular+Architecture+and+Alignment+of+Surface+Functionalized+hBN+Nanosheets&rft.jtitle=Advanced+materials+interfaces&rft.au=Chirag+R.+Ratwani&rft.au=Katarzyna+Z.+Donato&rft.au=Sergey+Grebenchuk&rft.au=Alice+Mija&rft.date=2025-03-01&rft.pub=Wiley-VCH&rft.eissn=2196-7350&rft.volume=12&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202400691&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_71a00bf74a6c44adabf3269d71f8f4b3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon