Enhanced Self‐Healing in Dual Network Entangled Hydrogels by Macromolecular Architecture and Alignment of Surface Functionalized hBN Nanosheets
Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and rest...
Uloženo v:
| Vydáno v: | Advanced materials interfaces Ročník 12; číslo 6 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
John Wiley & Sons, Inc
01.03.2025
Wiley-VCH |
| Témata: | |
| ISSN: | 2196-7350, 2196-7350 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains.
This work presents a novel dual‐network hydrogel utilizing surface‐functionalized hBN nanosheets and directional freezing to create anisotropic channels. This alignment helps direct the polymer chain movement, achieving a 92% self‐healing efficiency and superior mechanical strength compared to conventional isotropic hydrogels. |
|---|---|
| AbstractList | Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains.
This work presents a novel dual‐network hydrogel utilizing surface‐functionalized hBN nanosheets and directional freezing to create anisotropic channels. This alignment helps direct the polymer chain movement, achieving a 92% self‐healing efficiency and superior mechanical strength compared to conventional isotropic hydrogels. Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains. Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains. Abstract Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their notable attributes, self‐healing capabilities stand out as a significant advantage, facilitating autonomous repair of mechanical damage and restoration of structural integrity. In this work, a dual network macromolecular biphasic composite is designed using an anisotropic structure which facilitates unidirectional chain diffusion and imparts superior self‐healing and mechanical properties. The resulting nanocomposite demonstrates significantly higher self‐healing efficiency (92%) compared to traditional polyvinyl alcohol (PVA) hydrogels, while also improving the tensile strength and elastic modulus, which typically compete with each other in soft materials. This improvement is attributed to enhanced barrier properties within the matrix due to the alignment of surface‐functionalized 2D hBN nanosheets along the biopolymer scaffold. The insights gained from this research can be leveraged to develop advanced self‐healing materials by using 2D nanofillers as “safety barriers” to define the movement of polymeric chains. |
| Author | Donato, Katarzyna Z. Grebenchuk, Sergey Novoselov, Kostya S. Ratwani, Chirag R. Abdelkader, Amr M. Mija, Alice |
| Author_xml | – sequence: 1 givenname: Chirag R. orcidid: 0000-0002-8653-2168 surname: Ratwani fullname: Ratwani, Chirag R. email: cratwani@bournemouth.ac.uk organization: Bournemouth University – sequence: 2 givenname: Katarzyna Z. orcidid: 0000-0002-8103-2420 surname: Donato fullname: Donato, Katarzyna Z. organization: Charles University – sequence: 3 givenname: Sergey surname: Grebenchuk fullname: Grebenchuk, Sergey organization: National University of Singapore – sequence: 4 givenname: Alice surname: Mija fullname: Mija, Alice organization: UMR CNRS 7272 – sequence: 5 givenname: Kostya S. surname: Novoselov fullname: Novoselov, Kostya S. organization: National University of Singapore – sequence: 6 givenname: Amr M. surname: Abdelkader fullname: Abdelkader, Amr M. email: aabdelkader@bournemouth.ac.uk organization: UMR CNRS 7272 |
| BookMark | eNqFUU1vEzEQXaEiUUqvnC1xTvDHrr17DG1KIrXhUDivZr3jxMGxi9erKj3xE-hf7C_BIahCXHqa0eh9aN57W5z44LEo3jM6ZZTyj9Dv7JRTXlIqG_aqOOWskRMlKnryz_6mOB-GLaWUMc54LU6Lx7nfgNfYk1t05unnrwWCs35NrCeXIziywnQf4ncy9wn82mXgYt_HsEY3kG5PbkDHsAsO9eggklnUG5tQpzEiAd-TmbNrv0OfSDDkdowGNJKr0etkg89OD1lw82lFVuDDsEFMw7vitQE34PnfeVZ8u5p_vVhMrr98Xl7MridaiIpPOlM1dVkCGi2U1LzuZSONNnVfdQoYNkaKui6bBqlSVEitqpqXKkMEqhySOCuWR90-wLa9i3YHcd8GsO2fQ4jrFmKy2mGrGFDaGVWC1Nmyh84ILpteMVObshNZ68NR6y6GHyMOqd2GMeb_hlYwVctaCkkzanpE5ciGIaJ5dmW0PbTYHlpsn1vMhPI_grYJDsmlCNa9SLu3DvcvmLSzy5slKysufgP4h7Tt |
| CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2025_109241 crossref_primary_10_1016_j_snb_2025_138505 crossref_primary_10_1002_sus2_70028 crossref_primary_10_1007_s41127_024_00085_7 |
| Cites_doi | 10.1021/acsnano.6b04482 10.1021/acsami.3c16115 10.1002/pat.5467 10.1016/j.compositesb.2021.108661 10.1038/s41699-021-00231-2 10.1016/j.jallcom.2022.165801 10.1021/acsnano.3c02897 10.1039/C7TC04300G 10.1016/j.fpsl.2018.06.003 10.1021/am404497n 10.3390/colloids4040054 10.1016/j.pmatsci.2022.101001 10.1088/1361-6528/abce2e 10.1016/j.porgcoat.2022.107209 10.1039/C6RA02166B 10.3390/gels8090555 10.1021/nn5014808 10.1039/D1SM01361K 10.1016/S0039-6028(96)01591-9 10.3390/polym13213782 10.1002/pc.24518 10.1039/C4TA01464B 10.1002/smll.201303236 10.1016/j.jddst.2021.102914 10.1177/0748233718817180 10.1002/smll.202207081 10.1007/s41127-024-00077-7 10.1016/j.eurpolymj.2021.110974 10.1002/adem.200700274 10.1016/j.matchemphys.2023.128243 10.1021/acsanm.4c03056 10.1002/jbm.a.36841 10.1021/acs.nanolett.5b01842 10.1039/C8RA00340H 10.1021/acs.chemrev.0c01177 10.1016/j.matdes.2020.109094 10.1016/j.triboint.2023.108264 10.1021/acsnano.6b08408 10.3390/polym11121952 10.1002/mame.202200332 10.1002/smll.201001628 10.1007/s10853-020-04842-w 10.1016/j.eurpolymj.2019.109465 10.1021/mz300451r |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). Advanced Materials Interfaces published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M DOA |
| DOI | 10.1002/admi.202400691 |
| DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2196-7350 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_71a00bf74a6c44adabf3269d71f8f4b3 10_1002_admi_202400691 ADMI1452 |
| Genre | article |
| GrantInformation_xml | – fundername: UCAJ.E.D.I. funderid: ANR‐15‐IDEX‐01 – fundername: Ministry of Education, Singapore funderid: EDUNC‐33‐18‐279‐V12 – fundername: Royal Society funderid: RSRP∖R∖190000 |
| GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFKRA AFPKN AIACR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ARCSS AVUZU AZVAB BENPR BGLVJ BMXJE BRXPI CCPQU DCZOG DPXWK EBS G-S GODZA GROUPED_DOAJ HCIFZ KB. LATKE LEEKS LITHE LOXES LUTES LYRES M7S MEWTI MY~ M~E O9- P2W PDBOC PHGZT PTHSS R.K ROL WBKPD WOHZO WXSBR ZZTAW AAFWJ AAMMB AAYXX ABJNI AEFGJ AFFHD AGXDD AIDQK AIDYY AIURR BFHJK CITATION EJD PHGZM PQGLB SUPJJ 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3352-bf59844aefc376c28d696fcf8d5b7a1e9f6388499e077036c7582476fc3e70063 |
| IEDL.DBID | DOA |
| ISSN | 2196-7350 |
| IngestDate | Fri Oct 03 12:53:32 EDT 2025 Sat Jul 12 03:27:57 EDT 2025 Sat Nov 29 07:17:49 EST 2025 Tue Nov 18 20:57:42 EST 2025 Thu Mar 20 09:30:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3352-bf59844aefc376c28d696fcf8d5b7a1e9f6388499e077036c7582476fc3e70063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8103-2420 0000-0002-8653-2168 |
| OpenAccessLink | https://doaj.org/article/71a00bf74a6c44adabf3269d71f8f4b3 |
| PQID | 3178686360 |
| PQPubID | 2034582 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_71a00bf74a6c44adabf3269d71f8f4b3 proquest_journals_3178686360 crossref_primary_10_1002_admi_202400691 crossref_citationtrail_10_1002_admi_202400691 wiley_primary_10_1002_admi_202400691_ADMI1452 |
| PublicationCentury | 2000 |
| PublicationDate | 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 20250301 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials interfaces |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley-VCH |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
| References | 2017; 5 2015; 15 2021; 5 2022; 173 2023; 180 2021; 66 2023; 17 2019; 11 2019; 35 2023; 19 1997; 375 2016; 10 2022; 918 2023; 308 2020; 55 2020; 124 2021; 121 2024 2024; 16 2020; 108 2011; 7 2021; 13 2022; 164 2016; 6 2018; 39 2018; 8 2018; 17 2020; 4 2021; 32 2012; 1 2014; 2 2023; 131 2021; 211 2020; 196 2024; 7 2017; 11 2022; 8 2024; 9 2007; 9 2014; 8 2014; 6 2022; 18 2014; 10 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 Barkan T. (e_1_2_8_23_1) 2024 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 131 year: 2023 publication-title: Prog. Mater. Sci. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 35 start-page: 79 year: 2019 publication-title: Toxicol. Industr. Health – volume: 5 year: 2017 publication-title: J. Mater. Chem. C – volume: 1 start-page: 1233 year: 2012 publication-title: ACS Macro Lett. – volume: 308 year: 2023 publication-title: Mater. Chem. Phys. – volume: 5 start-page: 56 year: 2021 publication-title: npj 2D Mater. Appl. – volume: 6 start-page: 1632 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 121 year: 2021 publication-title: Chemical Reviews – volume: 7 year: 2024 publication-title: ACS Appl. Nano Mater. – volume: 39 year: 2018 publication-title: Polym. Compos. – volume: 8 start-page: 555 year: 2022 publication-title: Gels – volume: 308 year: 2023 publication-title: Macromol. Mater. Eng. – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 13 start-page: 3782 year: 2021 publication-title: Polymers – volume: 8 start-page: 6123 year: 2014 publication-title: ACS Nano – volume: 124 year: 2020 publication-title: Eur. Polym. J. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 375 start-page: L385 year: 1997 publication-title: Surf. Sci. – volume: 9 start-page: 1089 year: 2007 publication-title: Adv. Eng. Mater. – volume: 211 year: 2021 publication-title: Composites, Part B – volume: 10 start-page: 2352 year: 2014 publication-title: Small – volume: 15 start-page: 5449 year: 2015 publication-title: Nano Lett. – volume: 164 year: 2022 publication-title: Eur. Polym. J. – volume: 7 start-page: 465 year: 2011 publication-title: Small – volume: 55 year: 2020 publication-title: J. Mater. Sci. – volume: 173 year: 2022 publication-title: Prog. Org. Coat. – volume: 32 start-page: 4745 year: 2021 publication-title: Polym. Adv. Technol. – year: 2024 publication-title: Nat. Rev. Phys. – volume: 4 start-page: 54 year: 2020 publication-title: Coll. Interfaces – volume: 196 year: 2020 publication-title: Mater. Des. – volume: 18 start-page: 859 year: 2022 publication-title: Soft Matter – volume: 32 year: 2021 publication-title: Nanotechnology – volume: 17 start-page: 9681 year: 2023 publication-title: ACS Nano – volume: 11 start-page: 3742 year: 2017 publication-title: ACS Nano – volume: 11 start-page: 1952 year: 2019 publication-title: Polymers – volume: 19 year: 2023 publication-title: Small – volume: 16 start-page: 5847 year: 2024 publication-title: ACS Appl. Mater. Interfaces – volume: 108 start-page: 614 year: 2020 publication-title: J. Biomed. Mater. Res., Part A – volume: 10 start-page: 9434 year: 2016 publication-title: ACS Nano – volume: 66 year: 2021 publication-title: J. Drug Deliv. Sci. Technol. – volume: 918 year: 2022 publication-title: J. Alloys Compd. – volume: 9 start-page: 3 year: 2024 publication-title: Graph. 2D Mater. – volume: 17 start-page: 99 year: 2018 publication-title: Food Packag. Shelf Life – volume: 180 year: 2023 publication-title: Tribol. Int. – ident: e_1_2_8_34_1 doi: 10.1021/acsnano.6b04482 – ident: e_1_2_8_43_1 doi: 10.1021/acsami.3c16115 – ident: e_1_2_8_30_1 doi: 10.1002/pat.5467 – ident: e_1_2_8_13_1 doi: 10.1016/j.compositesb.2021.108661 – ident: e_1_2_8_27_1 doi: 10.1038/s41699-021-00231-2 – ident: e_1_2_8_14_1 doi: 10.1016/j.jallcom.2022.165801 – ident: e_1_2_8_4_1 doi: 10.1021/acsnano.3c02897 – ident: e_1_2_8_25_1 doi: 10.1039/C7TC04300G – ident: e_1_2_8_36_1 doi: 10.1016/j.fpsl.2018.06.003 – ident: e_1_2_8_38_1 doi: 10.1021/am404497n – ident: e_1_2_8_3_1 doi: 10.3390/colloids4040054 – ident: e_1_2_8_6_1 doi: 10.1016/j.pmatsci.2022.101001 – ident: e_1_2_8_41_1 doi: 10.1088/1361-6528/abce2e – ident: e_1_2_8_31_1 doi: 10.1016/j.porgcoat.2022.107209 – ident: e_1_2_8_9_1 doi: 10.1039/C6RA02166B – ident: e_1_2_8_12_1 doi: 10.3390/gels8090555 – ident: e_1_2_8_24_1 doi: 10.1021/nn5014808 – ident: e_1_2_8_28_1 doi: 10.1039/D1SM01361K – ident: e_1_2_8_37_1 doi: 10.1016/S0039-6028(96)01591-9 – ident: e_1_2_8_5_1 doi: 10.3390/polym13213782 – ident: e_1_2_8_10_1 doi: 10.1002/pc.24518 – ident: e_1_2_8_19_1 doi: 10.1039/C4TA01464B – ident: e_1_2_8_39_1 doi: 10.1002/smll.201303236 – ident: e_1_2_8_2_1 doi: 10.1016/j.jddst.2021.102914 – ident: e_1_2_8_20_1 doi: 10.1177/0748233718817180 – ident: e_1_2_8_15_1 doi: 10.1002/smll.202207081 – ident: e_1_2_8_21_1 doi: 10.1007/s41127-024-00077-7 – ident: e_1_2_8_7_1 doi: 10.1016/j.eurpolymj.2021.110974 – ident: e_1_2_8_11_1 doi: 10.1002/adem.200700274 – ident: e_1_2_8_42_1 doi: 10.1016/j.matchemphys.2023.128243 – ident: e_1_2_8_16_1 doi: 10.1021/acsanm.4c03056 – ident: e_1_2_8_22_1 doi: 10.1002/jbm.a.36841 – ident: e_1_2_8_45_1 doi: 10.1021/acs.nanolett.5b01842 – ident: e_1_2_8_33_1 doi: 10.1039/C8RA00340H – ident: e_1_2_8_1_1 doi: 10.1021/acs.chemrev.0c01177 – ident: e_1_2_8_17_1 doi: 10.1016/j.matdes.2020.109094 – ident: e_1_2_8_26_1 doi: 10.1016/j.triboint.2023.108264 – ident: e_1_2_8_32_1 doi: 10.1021/acsnano.6b08408 – ident: e_1_2_8_44_1 doi: 10.3390/polym11121952 – ident: e_1_2_8_18_1 doi: 10.1002/mame.202200332 – ident: e_1_2_8_40_1 doi: 10.1002/smll.201001628 – ident: e_1_2_8_29_1 doi: 10.1007/s10853-020-04842-w – year: 2024 ident: e_1_2_8_23_1 publication-title: Nat. Rev. Phys. – ident: e_1_2_8_35_1 doi: 10.1016/j.eurpolymj.2019.109465 – ident: e_1_2_8_8_1 doi: 10.1021/mz300451r |
| SSID | ssj0001121283 |
| Score | 2.3425071 |
| Snippet | Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among their... Abstract Hydrogels have shown great promise as versatile biomaterials for various applications, ranging from tissue engineering to flexible electronics. Among... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Advanced materials Alignment anisotropic hydrogels Biomedical materials Biopolymers directional freezing Flexible components Healing hexagonal boron nitride Hydrogels Mechanical properties Modulus of elasticity Nanocomposites Nanosheets Polyvinyl alcohol Safety barriers self‐healing Structural integrity surface functionalization Tensile strength Tissue engineering |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQAYkLb8RCQT4gcYoaP2I7xy3dVTl0Vakg9RY5fuxG2iYo2UVqT_0J8Bf5JYyd7Hb3gBDikEs0thzbM_PZmfkGoQ9wPgMUWrKEcVomXFGTaG5tAo-0zJBUORWLTcjZTF1e5uc7Wfw9P8T2wi1oRrTXQcF12R3dkYZqe1XB-S7EQIqQvn6fEKZC8QbKz-9uWQiY5sjFCZopEsmydMPcmNKj_S72PFMk8N9DnbvYNTqf6ZP_H_ZT9HgAnnjc75Rn6J6rn6OHMQDUdC_Qz0m9iMEA-MIt_a_bHyE_Cdwarmp8soaGsz5eHE9qgJPzJQieXtu2mYNvxeU1PtMxsG-otYvHO_8nsK4tHi-reQw8wI3HF-vWa-PwFJxqfxdZ3UCHi-MZBmvfdAvnVt1L9HU6-fLpNBnKNSQmJG4lpc9yxbl23oDVMlRZkQtvvLJZKTVxuQddV3DCcqkMtF8GNgnlEkSYkwEqvUIHdVO71wjnTruUaCo8I1xnWhumqRUiNBaGkRFKNktVmIHLPJTUWBY9CzMtwjQX22keoY9b-W89i8cfJY_Dym-lAvt2fNG082JQ5kISnaall1wLAx9sdekBBedWEq88L9kIHW72TTGYhK4AoKaECvRsMPq4Q_4ylGJ8cvaZ8Iy--Uf5t-gRDVWKY6TcITpYtWv3Dj0w31dV176PCvIbv2QSqQ priority: 102 providerName: Wiley-Blackwell |
| Title | Enhanced Self‐Healing in Dual Network Entangled Hydrogels by Macromolecular Architecture and Alignment of Surface Functionalized hBN Nanosheets |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202400691 https://www.proquest.com/docview/3178686360 https://doaj.org/article/71a00bf74a6c44adabf3269d71f8f4b3 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: KB. dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2196-7350 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001121283 issn: 2196-7350 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgAYkL4ldbWCofkDiFjR3HcY4tm2oR2qiiIK24WI5_2kglRU2LtBwQjwCvyJMwdtKqe0B74RAfoklkecaeb-zxNwi9gvgMUGiVRAmjVcQE1ZFixkTwZCbRJBZWhGITWVmKy8t8elDqy-eEdfTA3cCdZkTFceUyprhmTBlVOUAcucmIE45VgecTUM9BMBV2VwgsySLZsTTG9FSZLzWEgz5lkufkmhcKZP3XEOYhTg2OZvIQPegRIh51PXuEbtnmMboXMjV1-wT9LppFOLXHM7t0f37-8heJwP_gusFnW_iw7BK7cdEA7psvQfD8yqxXc3CCuLrCFypk4PVFcfHo4CABq8bg0bKehwwBvHJ4tl07pS2egPfrNg3r7_DDxbjEsCyv2oW1m_Yp-jQpPr49j_q6CpH2N6yiyqW5gLG0TsPyoqkwPOdOO2HSKlPE5g4mpYBQyMaZ5-fSoE3KMhBJbOYxzTN01Kwae4xwbpWNiaLcJYSpVCmdKGo49x9znZABinbjLHVPOu5rXyxlR5dMpdeL3OtlgF7v5b92dBv_lBx7te2lPE12eAHGI3vjkTcZzwCd7JQu-7nbSkBUggvPowa9D4ZwQ1fk6OziHWEpff4_-vQC3ae-xnDIcztBR5v11r5Ed_W3Td2uh-g2ZdMhujMuyumHYTB6aN-P3wx91urMtz8KaKfp57_YnglS |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQALEL34jCAB-QOEVLHMd2jh1r1Yk1mrQh7WY5_mgjlRQl7aRx4k-Af5G_hGcn7dYDQkgccomeLcd-X3557_cQeg_3M_BCyzRKKSkjKoiOFDUmgoebVCexsCI0m-BFIS4v87M-m9DXwnT4ENuAm5eMoK-9gPuA9OENaqgyXyq44PkkSObr1-9SMDWe1Qk9uwmzJKCbAxgniCaLeJrFG-jGmBzuTrFjmgKC_47bedt5DdZn_Og_rPsxeti7nnjY8coTdMfWT9H9kAKq22fo56ieh3QAfG4X7tf3H75CCQwbrmp8vIaBRZcxjkc1OJSzBRBOrk2znIF1xeU1nqqQ2td328XDW38osKoNHi6qWUg9wEuHz9eNU9riMZjVLhpZfYMJ50cFBn2_bOfWrtrn6PN4dPFxEvUNGyLtS7ei0mW5oFRZp0FvaSIMy5nTTpis5CqxuQNpF3DHsjH3wF8a2IRQDiSp5d5ZeoH26mVtXyKcW2XjRBHm0oSqTCmdKmIY84OZTpMBijZnJXWPZu6baixkh8NMpN9mud3mAfqwpf_a4Xj8kfLIH_2WyuNvhxfLZiZ7cZY8UXFcOk4V0_DBRpUO_ODc8MQJR8t0gA42jCN7pdBKcNUEEx6gDVYfWOQvS5HD4-lJQjPy6h_p36EHk4vpqTw9KT69RvvE9ywOeXMHaG_VrO0bdE9fraq2eRuk5TcegxaU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQuIgX7hOFAX5A4ila4ji289jRVptgVaWBtDfL8aWNVJIpaZG2p_0E-Iv8Eo6dtFsfEELiIS_RseXY5_LZOf4OQu9hfwYotEijlJIiooLoSFFjIni4SXUSCytCsQk-nYrz83zWZxP6uzAdP8T2wM1bRvDX3sDthXGHN6yhynwrYYPnkyCZv79-l2Y88YpN6OzmmCUB3xzIOME0WcTTLN5QN8bkcLeLndAUGPx3YOdt8Bqiz-Txfxj3E_Soh5542OnKU3THVs_Q_ZACqtvn6Oe4WoR0AHxml-7X9Q9_QwkCGy4rPFpDw2mXMY7HFQDK-RIEjy9NU88huuLiEp-qkNrXV9vFw1t_KLCqDB4uy3lIPcC1w2frxilt8QTCancaWV5Bh4ujKQZ_X7cLa1ftC_R1Mv7y8TjqCzZE2l_digqX5YJSZZ0Gv6WJMCxnTjthsoKrxOYOrF3AHsvG3BN_aVATQjmIpJZ7sLSP9qq6si8Rzq2ycaIIc2lCVaaUThUxjPnGTKfJAEWbtZK6ZzP3RTWWsuNhJtJPs9xO8wB92MpfdDwef5Q88ku_lfL82-FF3cxlb86SJyqOC8epYho-2KjCAQ7ODU-ccLRIB-hgoziydwqtBKgmmPAEbTD6oCJ_GYocjk5PEpqRV_8o_w49mI0m8vPJ9NNr9JD4ksUhbe4A7a2atX2D7unvq7Jt3gZj-Q2lDxYY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Self%E2%80%90Healing+in+Dual+Network+Entangled+Hydrogels+by+Macromolecular+Architecture+and+Alignment+of+Surface+Functionalized+hBN+Nanosheets&rft.jtitle=Advanced+materials+interfaces&rft.au=Chirag+R.+Ratwani&rft.au=Katarzyna+Z.+Donato&rft.au=Sergey+Grebenchuk&rft.au=Alice+Mija&rft.date=2025-03-01&rft.pub=Wiley-VCH&rft.eissn=2196-7350&rft.volume=12&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202400691&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_71a00bf74a6c44adabf3269d71f8f4b3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |