Approximate Symmetry Detection in Partial 3D Meshes

Symmetry is a common characteristic in natural and man‐made objects. Its ubiquitous nature can be exploited to facilitate the analysis and processing of computational representations of real objects. In particular, in computer graphics, the detection of symmetries in 3D geometry has enabled a number...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 7; pp. 131 - 140
Main Authors: Sipiran, Ivan, Gregor, Robert, Schreck, Tobias
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.10.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Symmetry is a common characteristic in natural and man‐made objects. Its ubiquitous nature can be exploited to facilitate the analysis and processing of computational representations of real objects. In particular, in computer graphics, the detection of symmetries in 3D geometry has enabled a number of applications in modeling and reconstruction. However, the problem of symmetry detection in incomplete geometry remains a challenging task. In this paper, we propose a vote‐based approach to detect symmetry in 3D shapes, with special interest in models with large missing parts. Our algorithm generates a set of candidate symmetries by matching local maxima of a surface function based on the heat diffusion in local domains, which guarantee robustness to missing data. In order to deal with local perturbations, we propose a multi‐scale surface function that is useful to select a set of distinctive points over which the approximate symmetries are defined. In addition, we introduce a vote‐based scheme that is aware of the partiality, and therefore reduces the number of false positive votes for the candidate symmetries. We show the effectiveness of our method in a varied set of 3D shapes and different levels of partiality. Furthermore, we show the applicability of our algorithm in the repair and completion of challenging reassembled objects in the context of cultural heritage.
Bibliography:ark:/67375/WNG-JHDNXT55-P
ArticleID:CGF12481
istex:5CE3FBAB4A9655E2F66C5D9B205EBAB8A919E0F6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12481