Machine learning in experimental neutrino physics

Neutrino physics has entered into the era of precision measurements. Over the last two decades, significant efforts have been made to measure precise parameters of the PMNS matrix, which describes neutrino oscillation phenomena. The next generation neutrino experiment will prioritize measuring lepto...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Vol. 233; no. 15-16; pp. 2687 - 2698
Main Author: Poonthottathil, N.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Subjects:
ISSN:1951-6355, 1951-6401
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Neutrino physics has entered into the era of precision measurements. Over the last two decades, significant efforts have been made to measure precise parameters of the PMNS matrix, which describes neutrino oscillation phenomena. The next generation neutrino experiment will prioritize measuring leptonic CP-violation, potentially revealing the matter–antimatter asymmetry of the universe. Technological advancements will enable faster and more precise measurements. This article describes how neutrino experiments, will utilize machine learning techniques to identify and reconstruct different neutrino event topology in detectors. This approach promises unprecedented measurements of neutrino oscillation parameters.
AbstractList Neutrino physics has entered into the era of precision measurements. Over the last two decades, significant efforts have been made to measure precise parameters of the PMNS matrix, which describes neutrino oscillation phenomena. The next generation neutrino experiment will prioritize measuring leptonic CP-violation, potentially revealing the matter–antimatter asymmetry of the universe. Technological advancements will enable faster and more precise measurements. This article describes how neutrino experiments, will utilize machine learning techniques to identify and reconstruct different neutrino event topology in detectors. This approach promises unprecedented measurements of neutrino oscillation parameters.
Author Poonthottathil, N.
Author_xml – sequence: 1
  givenname: N.
  orcidid: 0000-0003-3476-6330
  surname: Poonthottathil
  fullname: Poonthottathil, N.
  email: navaneeth@iitk.ac.in
  organization: Department of Physics, Indian Institute of Technology
BookMark eNqNkD1PwzAQhi1UJNrCbyASc6g_43pgQBVfUhFLd8txLq2r4AQ7kei_xyUgJBYYTnfDPXevnhma-NYDQpcEXxPC8QK6fVxEQiTjOaapCF3ivDhBU6IEyQuOyeR7ZkKcoVmMe4xFQRWbIvJs7M55yBowwTu_zZzP4L2D4F7B96bJPAx9cL7Nut0hOhvP0WltmggXX32ONvd3m9Vjvn55eFrdrnPLGO_zulK0BI6NNBWRighMpcG24qBsVUlgJVtSqFNYyQWIuizrBFABJbGYWjZHV-PZLrRvA8Re79sh-PRRMyoKJRSlLG3JccuGNsYAte5ScBMOmmB91KOPevSoRyc9-lOPLhJ584u0rje9a30fjGv-wS9HPqaPfgvhJ99f6Af4UIII
CitedBy_id crossref_primary_10_1140_epjs_s11734_024_01364_3
Cites_doi 10.1016/j.nima.2005.09.022
10.1088/1748-0221/11/09/P09001
10.1103/PhysRevLett.124.051103
10.1088/1748-0221/16/07/P07041
10.3389/fdata.2022.978857
10.1109/TNS.2021.3085428
10.1109/ICMLA.2018.00064
10.2172/1415814
10.1126/science.aat1378
10.1126/science.1242856
10.25358/openscience-8530
10.1088/1748-0221/13/04/P04009
10.1162/neco.1989.1.4.541
10.1109/CVPR.2015.7298594
10.22323/1.301.1057
10.3389/frai.2021.649917
10.1088/1748-0221/16/10/C10011
ContentType Journal Article
Copyright The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1140/epjs/s11734-024-01280-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1951-6401
EndPage 2698
ExternalDocumentID 10_1140_epjs_s11734_024_01280_6
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
123
199
1N0
203
29G
29~
2J2
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
QOS
R89
RED
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABJCF
ABRTQ
AFDZB
AFFHD
AFKRA
AFOHR
AHPBZ
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
EBLON
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c334t-fd92be40a7ad17915027a0cd4e9cdd7e3b382ef128745e5fbbf92b25eb1c02c3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001293515500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1951-6355
IngestDate Sun Nov 02 04:58:53 EST 2025
Sat Nov 29 03:49:44 EST 2025
Tue Nov 18 20:48:54 EST 2025
Fri Feb 21 02:38:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15-16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-fd92be40a7ad17915027a0cd4e9cdd7e3b382ef128745e5fbbf92b25eb1c02c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3476-6330
PQID 3256959223
PQPubID 2044459
PageCount 12
ParticipantIDs proquest_journals_3256959223
crossref_primary_10_1140_epjs_s11734_024_01280_6
crossref_citationtrail_10_1140_epjs_s11734_024_01280_6
springer_journals_10_1140_epjs_s11734_024_01280_6
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The European physical journal. ST, Special topics
PublicationTitleAbbrev Eur. Phys. J. Spec. Top
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AartsenMGEvidence for high-energy extraterrestrial neutrinos at the IceCube detectorScience2013342124285610.1126/science.1242856arXiv:1311.5238
M.T. Nieslony, Towards a neutron multiplicity measurement with the Accelerator Neutrino Neutron Interaction Experiment. PhD thesis, Mainz U. (2022). https://doi.org/10.25358/openscience-8530
AcciarriRCosmic ray background removal with deep neural networks in SBNDFront. Artif. Intell.2021455537038510.3389/frai.2021.649917arXiv:2107.13375
M. Huennefeld, Deep learning in physics exemplified by the reconstruction of muon-neutrino events in icecube, p. 1057 (2017). https://doi.org/10.22323/1.301.1057
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions (2014)
Z. Fu, et al., Generative models for simulation of KamLAND-Zen. Eur. Phys. J. C 342, 1242856 (2023). https://doi.org/10.1126/science.1242856. arXiv:1311.5238
ClerbauxBMollaMCPetitjeanP-AXuYYangYStudy of using machine learning for level 1 trigger decision in JUNO experimentIEEE Trans. Nucl. Sci.2021688218721932021ITNS...68.2187C10.1109/TNS.2021.3085428arXiv:2011.08847 [physics.ins-det]
AbbasiRA convolutional neural network based cascade reconstruction for the IceCube Neutrino ObservatoryJINST2021160704110.1088/1748-0221/16/07/P07041arXiv:2101.11589 [hep-ex]
N. Choma, F. Monti, L. Gerhardt, T. Palczewski, Z. Ronaghi Prabhat, W. Bhimji, M.M. Bronstein, S.R. Klein, J. Bruna, Graph neural networks for IceCube signal classification (2018)
E. Drakopoulou, et al., Application of machine learning techniques to lepton energy reconstruction in water Cherenkov detectors. JINST 11 (2018). https://doi.org/10.1088/1748-0221/13/04/P04009. arXiv:2107.13375
YangH-JStudies of boosted decision trees for MiniBooNE particle identificationNucl. Instrum. Methods Phys. Res.2005165553703852005NIMPA.555..370Y10.1016/j.nima.2005.09.022arXiv:2107.13375
A. Aurisano, et al., A convolutional neural network Neutrino Event Classifier. JINST 11 (2016) https://doi.org/10.1088/1748-0221/11/09/P09001. arXiv:2107.13375
AartsenMGMultimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922AScience2018361639813782018Sci...361.1378I10.1126/science.aat1378arXiv:1807.08816
R. Ospanov, A measurement of muon neutrino disappearance with the MINOS detectors and NuMI beam. PhD thesis, The University of Texas at Austin (2008). https://doi.org/10.2172/1415814
AartsenMGTime-integrated neutrino source searches with 10 years of IceCube dataPhys. Rev. Lett.202012452020PhRvL.124e1103A10.1103/PhysRevLett.124.051103arXiv:1910.08488
X. Ju, et al., Graph neural networks for particle reconstruction in high energy physics detectors. In: 33rd Annual Conference on Neural Information Processing Systems (2020)
ReckSGuderianDVermariënGDomiAGraph neural networks for reconstruction and classification in KM3NeTJINST202116101001110.1088/1748-0221/16/10/C10011arXiv:2107.13375
HewesJGraph neural network for object reconstruction in liquid argon time projection chambersEPJ Web Conf.2021251124285610.1126/science.1242856arXiv:1311.5238
JamiesonBStubbsMRamannaSWalkerJProuseNAkutsuRPerioPFedorkoWUsing machine learning to improve neutron identification in water Cherenkov detectorsFront. Big Data2022510.3389/fdata.2022.978857arXiv:2206.12954 [physics.ins-det]
LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput.19891454155110.1162/neco.1989.1.4.541
Y LeCun (1280_CR4) 1989; 1
S Reck (1280_CR17) 2021; 16
H-J Yang (1280_CR2) 2005; 16
1280_CR16
J Hewes (1280_CR6) 2021; 251
1280_CR15
R Acciarri (1280_CR9) 2021; 4
1280_CR14
1280_CR1
MG Aartsen (1280_CR12) 2020; 124
B Jamieson (1280_CR19) 2022; 5
1280_CR3
MG Aartsen (1280_CR11) 2018; 361
1280_CR18
1280_CR5
1280_CR8
1280_CR7
B Clerbaux (1280_CR20) 2021; 68
R Abbasi (1280_CR13) 2021; 16
MG Aartsen (1280_CR10) 2013; 342
References_xml – reference: R. Ospanov, A measurement of muon neutrino disappearance with the MINOS detectors and NuMI beam. PhD thesis, The University of Texas at Austin (2008). https://doi.org/10.2172/1415814
– reference: HewesJGraph neural network for object reconstruction in liquid argon time projection chambersEPJ Web Conf.2021251124285610.1126/science.1242856arXiv:1311.5238
– reference: JamiesonBStubbsMRamannaSWalkerJProuseNAkutsuRPerioPFedorkoWUsing machine learning to improve neutron identification in water Cherenkov detectorsFront. Big Data2022510.3389/fdata.2022.978857arXiv:2206.12954 [physics.ins-det]
– reference: AcciarriRCosmic ray background removal with deep neural networks in SBNDFront. Artif. Intell.2021455537038510.3389/frai.2021.649917arXiv:2107.13375
– reference: AartsenMGEvidence for high-energy extraterrestrial neutrinos at the IceCube detectorScience2013342124285610.1126/science.1242856arXiv:1311.5238
– reference: AartsenMGTime-integrated neutrino source searches with 10 years of IceCube dataPhys. Rev. Lett.202012452020PhRvL.124e1103A10.1103/PhysRevLett.124.051103arXiv:1910.08488
– reference: Z. Fu, et al., Generative models for simulation of KamLAND-Zen. Eur. Phys. J. C 342, 1242856 (2023). https://doi.org/10.1126/science.1242856. arXiv:1311.5238
– reference: , E. Drakopoulou, et al., Application of machine learning techniques to lepton energy reconstruction in water Cherenkov detectors. JINST 11 (2018). https://doi.org/10.1088/1748-0221/13/04/P04009. arXiv:2107.13375
– reference: M. Huennefeld, Deep learning in physics exemplified by the reconstruction of muon-neutrino events in icecube, p. 1057 (2017). https://doi.org/10.22323/1.301.1057
– reference: AbbasiRA convolutional neural network based cascade reconstruction for the IceCube Neutrino ObservatoryJINST2021160704110.1088/1748-0221/16/07/P07041arXiv:2101.11589 [hep-ex]
– reference: M.T. Nieslony, Towards a neutron multiplicity measurement with the Accelerator Neutrino Neutron Interaction Experiment. PhD thesis, Mainz U. (2022). https://doi.org/10.25358/openscience-8530
– reference: YangH-JStudies of boosted decision trees for MiniBooNE particle identificationNucl. Instrum. Methods Phys. Res.2005165553703852005NIMPA.555..370Y10.1016/j.nima.2005.09.022arXiv:2107.13375
– reference: X. Ju, et al., Graph neural networks for particle reconstruction in high energy physics detectors. In: 33rd Annual Conference on Neural Information Processing Systems (2020)
– reference: AartsenMGMultimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922AScience2018361639813782018Sci...361.1378I10.1126/science.aat1378arXiv:1807.08816
– reference: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions (2014)
– reference: A. Aurisano, et al., A convolutional neural network Neutrino Event Classifier. JINST 11 (2016) https://doi.org/10.1088/1748-0221/11/09/P09001. arXiv:2107.13375
– reference: N. Choma, F. Monti, L. Gerhardt, T. Palczewski, Z. Ronaghi Prabhat, W. Bhimji, M.M. Bronstein, S.R. Klein, J. Bruna, Graph neural networks for IceCube signal classification (2018)
– reference: LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput.19891454155110.1162/neco.1989.1.4.541
– reference: ReckSGuderianDVermariënGDomiAGraph neural networks for reconstruction and classification in KM3NeTJINST202116101001110.1088/1748-0221/16/10/C10011arXiv:2107.13375
– reference: ClerbauxBMollaMCPetitjeanP-AXuYYangYStudy of using machine learning for level 1 trigger decision in JUNO experimentIEEE Trans. Nucl. Sci.2021688218721932021ITNS...68.2187C10.1109/TNS.2021.3085428arXiv:2011.08847 [physics.ins-det]
– volume: 16
  start-page: 370
  issue: 555
  year: 2005
  ident: 1280_CR2
  publication-title: Nucl. Instrum. Methods Phys. Res.
  doi: 10.1016/j.nima.2005.09.022
– ident: 1280_CR3
  doi: 10.1088/1748-0221/11/09/P09001
– volume: 124
  issue: 5
  year: 2020
  ident: 1280_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.051103
– volume: 16
  start-page: 07041
  year: 2021
  ident: 1280_CR13
  publication-title: JINST
  doi: 10.1088/1748-0221/16/07/P07041
– volume: 5
  year: 2022
  ident: 1280_CR19
  publication-title: Front. Big Data
  doi: 10.3389/fdata.2022.978857
– volume: 68
  start-page: 2187
  issue: 8
  year: 2021
  ident: 1280_CR20
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2021.3085428
– ident: 1280_CR8
  doi: 10.1109/ICMLA.2018.00064
– ident: 1280_CR1
  doi: 10.2172/1415814
– volume: 361
  start-page: 1378
  issue: 6398
  year: 2018
  ident: 1280_CR11
  publication-title: Science
  doi: 10.1126/science.aat1378
– volume: 342
  start-page: 1242856
  year: 2013
  ident: 1280_CR10
  publication-title: Science
  doi: 10.1126/science.1242856
– ident: 1280_CR7
– volume: 251
  start-page: 1242856
  year: 2021
  ident: 1280_CR6
  publication-title: EPJ Web Conf.
  doi: 10.1126/science.1242856
– ident: 1280_CR15
  doi: 10.25358/openscience-8530
– ident: 1280_CR16
  doi: 10.1088/1748-0221/13/04/P04009
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 1280_CR4
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– ident: 1280_CR5
  doi: 10.1109/CVPR.2015.7298594
– ident: 1280_CR14
  doi: 10.22323/1.301.1057
– ident: 1280_CR18
  doi: 10.1126/science.1242856
– volume: 4
  start-page: 370
  issue: 555
  year: 2021
  ident: 1280_CR9
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2021.649917
– volume: 16
  start-page: 10011
  issue: 10
  year: 2021
  ident: 1280_CR17
  publication-title: JINST
  doi: 10.1088/1748-0221/16/10/C10011
SSID ssj0056293
Score 2.3876736
SecondaryResourceType review_article
Snippet Neutrino physics has entered into the era of precision measurements. Over the last two decades, significant efforts have been made to measure precise...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2687
SubjectTerms Algorithms
Antimatter
Atomic
Charged particles
Classical and Continuum Physics
Condensed Matter Physics
Cosmic rays
CP violation
Experiments
Machine learning
Materials Science
Measurement Science and Instrumentation
Modern Machine Learning and Particle Physics: An In-Depth Review
Molecular
Neural networks
Neutrinos
Optical and Plasma Physics
Parameters
Physics
Physics and Astronomy
Review
Sensors
Topology
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BAYmFb0ShoAysVuM4aeIJIQRioUKiQzcrsR1UhNLSFH4_d45DgYEOSJkS2YrO53t-9vkdwGWKbE0il2YmyQcsNriGy2QastwUGh-pw0i7YhPpcJiNx_LRb7jVPq2yjYkuUJuppj3yvkBslolENLuavTGqGkWnq76ExjpskEoCd6l7T20kRmh3orucSskTsPr8LuQUfTt7qfs156mIGcIUoziNPOonOi2XnL9OSR343O3-97f3YMcvO4Prxk_2Yc1WB7Dl0j91fQj8weVU2sAXkXgOJlXwXfw_qCzJ9lfToNkKqY9gdHc7urlnvpgC00LEC1YaGRU2DvM0NyRJmiAfzUNtYiu1MakVhcgiW3Knf2-TsihKbBAlGMtpvMQxdKppZU8gQM4sstCk9DrmxSAvdYSzPCdeW9oy68KgtaHSXmic6l28quYSdKjI-KoxvkLjK2d8NehC-NVw1mhtrG7Sa82u_OSr1dLmXeDtwC0_r-jy9O8uz2A7Iodx1xF70FnM3-05bOqPxaSeXzj_-wQaEuBo
  priority: 102
  providerName: ProQuest
Title Machine learning in experimental neutrino physics
URI https://link.springer.com/article/10.1140/epjs/s11734-024-01280-6
https://www.proquest.com/docview/3256959223
Volume 233
WOSCitedRecordID wos001293515500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: KB.
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4TcGL3-J0lh68xrVNuzZHJxuCOMY2ZHgJbZLKRLqxTv9-X9LWqQcHCqWHlhfKe8n7aF5-P4CrEKs1hrU0kUHcIb7EHC5ioUNimQi8mHA8YcgmwsEgmk7Z8CvVl-52r7Ykjacu8Gydtlq85O3cdUPqEwwsRHtWrHxq0MCYF2nWhtH4sXLCGNUN3q6rWeR1TC1bu34Z6HtgWmebPzZITdzp7__jiw9gr0w27ZtidhzClsqOYMc0fYr8GNwH00mp7JI64tmeZfZXyH87UxqsP5vbxQ-Q_AQm_d7k9o6UFApEUOqvSCqZlyjficNYaiDSAKvQ2BHSV0xIGSqa0MhTqWtQ71WQJkmKAl6AHlxbiZ5CPZtn6gxsrJRp5MhQP_bdpBOnwsO1HetqNlVp1IROpT4uSnhxzXLxyoujzw7X6uCFOjiqgxt18E4TnE_BRYGwsVmkVdmHl0su5xSTNxYwTHea4Fb2WL_eMOT5H2QuYNfTdjUnE1tQXy3f1CVsi_fVLF9a0Oj2BsORBbX77rWle0rHeB8GT5aZqR_bjeCN
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED6VAoKFN6JQIAOMpkmcNMmAEK-qVR9i6NDNSmwHFaG0NAXEj-I_cnYSCgwwdUDKlMiWle9y3118vg_gxMNsLcBcmgg3rBNHYAznB55JQhFxvAJu2lyLTXi9nj8YBHcleC_OwqiyysInakctRlz9I69R5ObADZDNLsZPRKlGqd3VQkIjM4u2fHvFlC09b90gvqe23bjtXzdJripAOKXOlMQisCPpmKEXCtWb08XELDS5cGTAhfAkjahvy9jSjeClG0dRjANsF52aWjjFaRdg0aEYmqo94KuzwvFjJKF7_FpKuV7xeF5OhilMTY4f0lpqWR51CLIiUbSAadt3MpxFuD82ZTXXNdb_2VvagLU8qDYus69gE0oy2YJlXdzK022wurpiVBq5RMa9MUyMr9IGRiKVKEEyMrIfPekO9Oex3F0oJ6NE7oHh-z71TeGp244V1cOY2-jDQpW1xzL2K1AvIGM8b6Ou1DweWXbE22QKa5ZhzRBrprFm9QqYnwPHWSeRv4dUC5RZ7lpSNoO4AlZhJ7PHf0y5__uUx7DS7Hc7rNPqtQ9g1Va2qg9eVqE8nTzLQ1jiL9NhOjnSpm8Am7MRfQB7Nz5b
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED_m_MAXv8Xp1D74GpY2_cqj6IaijoFD9hbafMhEurJW_36TtHXqgwMR-pRyodwlufs1d78DuIg0WqMaSyMRJCHyhY7hYhphlIiU64dy7HHbbCIaDuPJhI5a0G9qYWy2e3MlWdU0GJamrOzlQtXctrgn85eiV7huRHyknQwyp6xGQSuw6ptsegPaH5-aA1l7eMu965qO8sa_1mlev0z03UktIs8fl6XWBw22_-nrd2CrDkKdy2rV7EJLZnuwbpNBebEP7oPNsJRO3VLi2ZlmztdWAE4mDYl_NnOqHyPFAYwH_fHVDapbKyBOiF8iJaiXSh8nUSIMQWmg0WmCufAl5UJEkqQk9qRyLRu-DFSaKi3gBfpkN9Yjh9DOZpk8AkcjaBJjEZlh303DRHFP7_nEoFwlVdyBsFEl4zXtuOl-8cqqkmjMjDpYpQ6m1cGsOljYAfwpmFfMG8tFuo2tWL0VC0Z0UEcDqsOgDriNbRavl0x5_AeZc9gYXQ_Y_e3w7gQ2PWNiW7zYhXY5f5OnsMbfy2kxP7PL9APe9Ofn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+experimental+neutrino+physics&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Poonthottathil%2C+N.&rft.date=2024-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1951-6355&rft.eissn=1951-6401&rft.volume=233&rft.issue=15-16&rft.spage=2687&rft.epage=2698&rft_id=info:doi/10.1140%2Fepjs%2Fs11734-024-01280-6&rft.externalDocID=10_1140_epjs_s11734_024_01280_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon