A comprehensive exploration of semantic relation extraction via pre-trained CNNs

Semantic relation extraction between entity pairs is a crucial task in information extraction from text. In this paper, we propose a new pre-trained network architecture for this task, and it is called the XM-CNN. The XM-CNN utilizes word embedding and position embedding information. It is designed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 194; S. 105488
Hauptverfasser: Li, Qing, Li, Lili, Wang, Weinan, Li, Qi, Zhong, Jiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 22.04.2020
Elsevier Science Ltd
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Semantic relation extraction between entity pairs is a crucial task in information extraction from text. In this paper, we propose a new pre-trained network architecture for this task, and it is called the XM-CNN. The XM-CNN utilizes word embedding and position embedding information. It is designed to reinforce the contextual output from the MT-DNNKD pre-trained model. Our model effectively utilized an entity-aware attention mechanisms to detected the features and also adopts and applies more relation-specific pooling attention mechanisms applied to it. The experimental results show that the XM-CNN achieves state-of-the-art results on the SemEval-2010 task 8, and a thorough evaluation of the method is conducted.
AbstractList Semantic relation extraction between entity pairs is a crucial task in information extraction from text. In this paper, we propose a new pre-trained network architecture for this task, and it is called the XM-CNN. The XM-CNN utilizes word embedding and position embedding information. It is designed to reinforce the contextual output from the MT-DNNKD pre-trained model. Our model effectively utilized an entity-aware attention mechanisms to detected the features and also adopts and applies more relation-specific pooling attention mechanisms applied to it. The experimental results show that the XM-CNN achieves state-of-the-art results on the SemEval-2010 task 8, and a thorough evaluation of the method is conducted.
ArticleNumber 105488
Author Li, Lili
Wang, Weinan
Zhong, Jiang
Li, Qing
Li, Qi
Author_xml – sequence: 1
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  email: liqing@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Lili
  surname: Li
  fullname: Li, Lili
  email: lilili@cqu.edu.cn
  organization: School of Civil Engineering, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Weinan
  surname: Wang
  fullname: Wang, Weinan
  email: wangweinan@pku.edu.cn
  organization: School of Mathematical Sciences, Peking University, Beijing, China
– sequence: 4
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  email: liqi0713@foxmail.com
  organization: Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China
– sequence: 5
  givenname: Jiang
  surname: Zhong
  fullname: Zhong, Jiang
  email: zhongjiang@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
BookMark eNqFkE1Lw0AQhhepYK3-Aw8Bz6n7lSbrQSjFLyjVg56XZDLBjelu3U1L--9NGk8e9DQzL_PM8L7nZGSdRUKuGJ0yymY39fTTunAIU055LyUyy07ImGUpj1NJ1YiMqUponNKEnZHzEGpKKecsG5PXeQRuvfH4gTaYHUa43zTO561xNnJVFHCd29ZA5LEZRNy3PodjuzN51KFxJxiLZbRYrcIFOa3yJuDlT52Q94f7t8VTvHx5fF7MlzEIIdu4KumsqBQCzRQw5BVCBqLKE5YoigkrM6ikYKkqALu5xAIZqJmQLEtQFCAm5Hq4u_Hua4uh1bXbetu91FxKqRSXgndbctgC70LwWOmNN-vcHzSjus9O13rITvfZ6SG7Drv9hYFpj_Z7q81_8N0AY2d_Z9DrAAYtYGk8QqtLZ_4-8A29LJDG
CitedBy_id crossref_primary_10_1007_s10489_024_05831_1
crossref_primary_10_1016_j_knosys_2022_109701
crossref_primary_10_1155_2022_6561622
crossref_primary_10_3233_JIFS_237391
crossref_primary_10_3390_s22176632
crossref_primary_10_3390_app12199723
crossref_primary_10_1007_s10489_022_03547_8
crossref_primary_10_1016_j_engappai_2022_105099
crossref_primary_10_1108_EL_10_2020_0304
crossref_primary_10_1007_s10489_022_03837_1
crossref_primary_10_1016_j_compbiomed_2022_105943
crossref_primary_10_1016_j_compbiomed_2022_105726
crossref_primary_10_1162_dint_a_00227
crossref_primary_10_1109_JIOT_2024_3427429
crossref_primary_10_1016_j_compbiomed_2022_105760
crossref_primary_10_1016_j_compbiomed_2023_106576
crossref_primary_10_1007_s11042_022_11981_6
crossref_primary_10_1016_j_jii_2024_100759
crossref_primary_10_1109_ACCESS_2023_3334012
crossref_primary_10_1109_ACCESS_2023_3339581
crossref_primary_10_3390_electronics11182831
crossref_primary_10_1145_3520082
crossref_primary_10_3390_app13137585
crossref_primary_10_1007_s00371_021_02377_y
crossref_primary_10_1016_j_knosys_2022_109470
crossref_primary_10_1109_TVT_2022_3178094
crossref_primary_10_1016_j_eswa_2022_116616
crossref_primary_10_3390_su13115892
crossref_primary_10_1007_s00432_023_04992_9
crossref_primary_10_1016_j_jbi_2024_104717
crossref_primary_10_1007_s11063_021_10690_9
crossref_primary_10_1016_j_eswa_2023_120097
Cites_doi 10.1007/s10489-018-1179-1
10.18653/v1/D13-1137
10.1016/j.ins.2018.01.051
10.1016/j.knosys.2016.03.008
10.3115/v1/P14-2012
10.3115/v1/D14-1162
10.1016/j.knosys.2019.02.033
10.1016/j.ins.2017.12.045
10.1016/j.ins.2019.02.065
10.1109/ICCV.2015.279
10.1016/j.knosys.2017.09.008
10.1016/j.knosys.2015.11.002
10.1016/j.knosys.2016.04.015
10.1109/CVPR.2016.10
10.18653/v1/P16-2034
10.18653/v1/D15-1206
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Apr 22, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Apr 22, 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2020.105488
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2020_105488
S0950705120300095
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-fd06bf9ec089c1e2fec8c3fa51590e51d8cf43179bce0e5debe1c9634185e3bc3
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534581300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:43:37 EST 2025
Tue Nov 18 21:29:40 EST 2025
Sat Nov 29 07:07:06 EST 2025
Fri Feb 23 02:48:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Relation extraction
Semantic relation
Natural language processing
Convolutional neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-fd06bf9ec089c1e2fec8c3fa51590e51d8cf43179bce0e5debe1c9634185e3bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2444992432
PQPubID 2035257
ParticipantIDs proquest_journals_2444992432
crossref_primary_10_1016_j_knosys_2020_105488
crossref_citationtrail_10_1016_j_knosys_2020_105488
elsevier_sciencedirect_doi_10_1016_j_knosys_2020_105488
PublicationCentury 2000
PublicationDate 2020-04-22
PublicationDateYYYYMMDD 2020-04-22
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-22
  day: 22
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References R. Oami, Object information extraction apparatus, object information extraction program, and object information extraction method, US Patent App. 10/121,089, Nov. 6 2018.
Wang, Wang, Fujita (b9) 2019
Suchanek, Ifrim, Weikum (b11) 2006
R. Yangarber, R. Grishman, NYU: Description of the proteus/PET system as used for MUC-7 ST, in: Seventh Message Understanding Conference (MUC-7): Proceedings of a Conference Held in Fairfax, Virginia, April 29-May 1, 1998, 1998.
Wang, Huang, Polozov, Brockschmidt, Singh (b47) 2018
Liu, He, Chen, Gao (b46) 2019
Zhou, Zhou, He, Wu (b2) 2016; 93
Rink, Harabagiu (b50) 2010
Radford, Narasimhan, Salimans, Sutskever (b45) 2018
X. Huang, et al. Attention-based convolutional neural network for semantic relation extraction, in: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2016, pp. 2526–2536.
Hoffmann, Zhang, Ling, Zettlemoyer, Weld (b16) 2011
Yu, Li, Luo, Fujita, Yu, Pan (b25) 2018; 433
J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–1543.
Leng, Jiang (b7) 2016; 100
Zhang, Wang (b40) 2015
K. Hashimoto, M. Miwa, Y. Tsuruoka, T. Chikayama, Simple customization of recursive neural networks for semantic relation classification, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013, pp. 1372–1376.
Brin (b30) 1998
Acharya, Fujita, Oh, Hagiwara, Tan, Adam, San Tan (b18) 2019; 49
Zeng, Liu, Lai, Zhou, Zhao (b39) 2014
Hendrickx, Kim, Kozareva, Nakov, Ó Séaghdha, Padó, Pennacchiotti, Romano, Szpakowicz (b49) 2009
Wang, Cao, De Melo, Liu (b19) 2016
Lee, Seo, Choi (b23) 2019
Ali, Kwak, Khan, El-Sappagh, Ali, Ullah, Kim, Kwak (b8) 2019
P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, B. Xu, Attention-based bidirectional long short-term memory networks for relation classification, in: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2016, pp. 207–212.
Chan, Roth (b34) 2010
Kambhatla (b10) 2004
Santos, Xiang, Zhou (b22) 2015
M. Xiao, C. Liu, Semantic relation classification via hierarchical recurrent neural network with attention, in: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2016, pp. 1254–1263.
Gonzalez, Turmo (b32) 2009
Socher, Huval, Manning, Ng (b51) 2012
Qian, Zhou, Kong, Zhu, Qian (b12) 2008
Mintz, Bills, Snow, Jurafsky (b14) 2009
Devlin, Chang, Lee, Toutanova (b26) 2018
Zeiler (b48) 2018
Bunescu, Mooney (b13) 2005
Raghavendra, Fujita, Bhandary, Gudigar, Tan, Acharya (b21) 2018; 441
Riedel, Yao, McCallum (b15) 2010
S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick, D. Parikh, Vqa: Visual question answering, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2425–2433.
Liu, He, Chen, Gao (b28) 2019
T.H. Nguyen, R. Grishman, Employing word representations and regularization for domain adaptation of relation extraction, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2014, pp. 68–74.
Z. Yang, X. He, J. Gao, L. Deng, A. Smola, Stacked attention networks for image question answering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 21–29.
Mikolov, Chen, Corrado, Dean (b36) 2013
Vashishth, Joshi, Prayaga, Bhattacharyya, Talukdar (b33) 2018
Shi, Lin (b44) 2019
Hakami, Bollegala (b5) 2017; 136
Fujita, Cimr (b17) 2019; 486
Mikolov, Sutskever, Chen, Corrado, Dean (b37) 2013
Shi, Weninger (b4) 2016; 104
S. Zhang, D. Zheng, X. Hu, M. Yang, Bidirectional long short-term memory networks for relation classification, in: Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation, 2015, pp. 73–78.
Liu, He, Chen, Gao (b27) 2019
Xu, Feng, Huang, Zhao (b42) 2015
Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, Z. Jin, Classifying relations via long short term memory networks along shortest dependency paths, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 1785–1794.
Liu (10.1016/j.knosys.2020.105488_b27) 2019
10.1016/j.knosys.2020.105488_b52
Xu (10.1016/j.knosys.2020.105488_b42) 2015
Rink (10.1016/j.knosys.2020.105488_b50) 2010
Mikolov (10.1016/j.knosys.2020.105488_b37) 2013
Shi (10.1016/j.knosys.2020.105488_b4) 2016; 104
Zhou (10.1016/j.knosys.2020.105488_b2) 2016; 93
Liu (10.1016/j.knosys.2020.105488_b46) 2019
Shi (10.1016/j.knosys.2020.105488_b44) 2019
Qian (10.1016/j.knosys.2020.105488_b12) 2008
10.1016/j.knosys.2020.105488_b20
Hoffmann (10.1016/j.knosys.2020.105488_b16) 2011
Raghavendra (10.1016/j.knosys.2020.105488_b21) 2018; 441
Kambhatla (10.1016/j.knosys.2020.105488_b10) 2004
10.1016/j.knosys.2020.105488_b24
Fujita (10.1016/j.knosys.2020.105488_b17) 2019; 486
Leng (10.1016/j.knosys.2020.105488_b7) 2016; 100
Ali (10.1016/j.knosys.2020.105488_b8) 2019
Zhang (10.1016/j.knosys.2020.105488_b40) 2015
10.1016/j.knosys.2020.105488_b29
Mikolov (10.1016/j.knosys.2020.105488_b36) 2013
Hendrickx (10.1016/j.knosys.2020.105488_b49) 2009
Mintz (10.1016/j.knosys.2020.105488_b14) 2009
Brin (10.1016/j.knosys.2020.105488_b30) 1998
Santos (10.1016/j.knosys.2020.105488_b22) 2015
Suchanek (10.1016/j.knosys.2020.105488_b11) 2006
10.1016/j.knosys.2020.105488_b6
10.1016/j.knosys.2020.105488_b31
10.1016/j.knosys.2020.105488_b35
Wang (10.1016/j.knosys.2020.105488_b47) 2018
Riedel (10.1016/j.knosys.2020.105488_b15) 2010
10.1016/j.knosys.2020.105488_b38
Hakami (10.1016/j.knosys.2020.105488_b5) 2017; 136
Yu (10.1016/j.knosys.2020.105488_b25) 2018; 433
10.1016/j.knosys.2020.105488_b1
Devlin (10.1016/j.knosys.2020.105488_b26) 2018
10.1016/j.knosys.2020.105488_b3
Zeng (10.1016/j.knosys.2020.105488_b39) 2014
Chan (10.1016/j.knosys.2020.105488_b34) 2010
Lee (10.1016/j.knosys.2020.105488_b23) 2019
Gonzalez (10.1016/j.knosys.2020.105488_b32) 2009
10.1016/j.knosys.2020.105488_b41
10.1016/j.knosys.2020.105488_b43
Bunescu (10.1016/j.knosys.2020.105488_b13) 2005
Acharya (10.1016/j.knosys.2020.105488_b18) 2019; 49
Socher (10.1016/j.knosys.2020.105488_b51) 2012
Wang (10.1016/j.knosys.2020.105488_b19) 2016
Radford (10.1016/j.knosys.2020.105488_b45) 2018
Wang (10.1016/j.knosys.2020.105488_b9) 2019
Liu (10.1016/j.knosys.2020.105488_b28) 2019
Vashishth (10.1016/j.knosys.2020.105488_b33) 2018
Zeiler (10.1016/j.knosys.2020.105488_b48) 2018
References_xml – start-page: 782
  year: 2009
  end-page: 787
  ident: b32
  article-title: Unsupervised relation extraction by massive clustering
  publication-title: 2009 Ninth IEEE International Conference on Data Mining
– start-page: 256
  year: 2010
  end-page: 259
  ident: b50
  article-title: Utd: Classifying semantic relations by combining lexical and semantic resources
  publication-title: Proceedings of the 5th International Workshop on Semantic Evaluation
– reference: Z. Yang, X. He, J. Gao, L. Deng, A. Smola, Stacked attention networks for image question answering, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 21–29.
– reference: R. Yangarber, R. Grishman, NYU: Description of the proteus/PET system as used for MUC-7 ST, in: Seventh Message Understanding Conference (MUC-7): Proceedings of a Conference Held in Fairfax, Virginia, April 29-May 1, 1998, 1998.
– reference: M. Xiao, C. Liu, Semantic relation classification via hierarchical recurrent neural network with attention, in: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2016, pp. 1254–1263.
– year: 2015
  ident: b42
  article-title: Semantic relation classification via convolutional neural networks with simple negative sampling
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: b37
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Advances in Neural Information Processing Systems
– volume: 486
  start-page: 231
  year: 2019
  end-page: 239
  ident: b17
  article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network
  publication-title: Inform. Sci.
– year: 2016
  ident: b19
  article-title: Relation classification via multi-level attention cnns
– year: 2018
  ident: b45
  article-title: Improving language understanding by generative pre-training
– year: 2018
  ident: b47
  article-title: Execution-guided neural program decoding
– reference: P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, B. Xu, Attention-based bidirectional long short-term memory networks for relation classification, in: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2016, pp. 207–212.
– start-page: 1003
  year: 2009
  end-page: 1011
  ident: b14
  article-title: Distant supervision for relation extraction without labeled data
  publication-title: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2
– volume: 433
  start-page: 241
  year: 2018
  end-page: 254
  ident: b25
  article-title: Convolutional networks with cross-layer neurons for image recognition
  publication-title: Inform. Sci.
– reference: K. Hashimoto, M. Miwa, Y. Tsuruoka, T. Chikayama, Simple customization of recursive neural networks for semantic relation classification, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013, pp. 1372–1376.
– start-page: 22
  year: 2004
  ident: b10
  article-title: Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations
  publication-title: Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions
– start-page: 152
  year: 2010
  end-page: 160
  ident: b34
  article-title: Exploiting background knowledge for relation extraction
  publication-title: Proceedings of the 23rd International Conference on Computational Linguistics
– year: 2015
  ident: b40
  article-title: Relation classification via recurrent neural network
– volume: 136
  start-page: 172
  year: 2017
  end-page: 182
  ident: b5
  article-title: Compositional approaches for representing relations between words: A comparative study
  publication-title: Knowl.-Based Syst.
– start-page: 541
  year: 2011
  end-page: 550
  ident: b16
  article-title: Knowledge-based weak supervision for information extraction of overlapping relations
  publication-title: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1
– year: 2019
  ident: b46
  article-title: Multi-task deep neural networks for natural language understanding
– volume: 441
  start-page: 41
  year: 2018
  end-page: 49
  ident: b21
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inform. Sci.
– start-page: 1201
  year: 2012
  end-page: 1211
  ident: b51
  article-title: Semantic compositionality through recursive matrix-vector spaces
  publication-title: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
– reference: T.H. Nguyen, R. Grishman, Employing word representations and regularization for domain adaptation of relation extraction, in: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2014, pp. 68–74.
– reference: S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Lawrence Zitnick, D. Parikh, Vqa: Visual question answering, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2425–2433.
– year: 2018
  ident: b48
  article-title: Adadelta: an adaptive learning rate method. 2012
– reference: X. Huang, et al. Attention-based convolutional neural network for semantic relation extraction, in: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 2016, pp. 2526–2536.
– year: 2019
  ident: b44
  article-title: Simple BERT models for relation extraction and semantic role labeling
– start-page: 94
  year: 2009
  end-page: 99
  ident: b49
  article-title: Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals
  publication-title: Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions
– reference: Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, Z. Jin, Classifying relations via long short term memory networks along shortest dependency paths, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 1785–1794.
– reference: R. Oami, Object information extraction apparatus, object information extraction program, and object information extraction method, US Patent App. 10/121,089, Nov. 6 2018.
– start-page: 172
  year: 1998
  end-page: 183
  ident: b30
  article-title: Extracting patterns and relations from the world wide web
  publication-title: International Workshop on the World Wide Web and Databases
– year: 2015
  ident: b22
  article-title: Classifying relations by ranking with convolutional neural networks
– year: 2019
  ident: b28
  article-title: Multi-task deep neural networks for natural language understanding
– year: 2018
  ident: b33
  article-title: Reside: Improving distantly-supervised neural relation extraction using side information
– start-page: 712
  year: 2006
  end-page: 717
  ident: b11
  article-title: Combining linguistic and statistical analysis to extract relations from web documents
  publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2019
  ident: b23
  article-title: Semantic relation classification via bidirectional LSTM networks with entity-aware attention using latent entity typing
– year: 2019
  ident: b27
  article-title: Improving multi-task deep neural networks via knowledge distillation for natural language understanding
– start-page: 148
  year: 2010
  end-page: 163
  ident: b15
  article-title: Modeling relations and their mentions without labeled text
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– year: 2019
  ident: b8
  article-title: Transportation sentiment analysis using word embedding and ontology-based topic modeling
  publication-title: Knowl.-Based Syst.
– volume: 93
  start-page: 75
  year: 2016
  end-page: 83
  ident: b2
  article-title: Learning semantic representation with neural networks for community question answering retrieval
  publication-title: Knowl.-Based Syst.
– year: 2014
  ident: b39
  article-title: Relation classification via convolutional deep neural network
– reference: S. Zhang, D. Zheng, X. Hu, M. Yang, Bidirectional long short-term memory networks for relation classification, in: Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation, 2015, pp. 73–78.
– reference: J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–1543.
– volume: 49
  start-page: 16
  year: 2019
  end-page: 27
  ident: b18
  article-title: Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals
  publication-title: Appl. Intell.
– year: 2013
  ident: b36
  article-title: Efficient estimation of word representations in vector space
– start-page: 105030
  year: 2019
  ident: b9
  article-title: Word sense disambiguation: A comprehensive knowledge exploitation framework
  publication-title: Knowl.-Based Syst.
– volume: 104
  start-page: 123
  year: 2016
  end-page: 133
  ident: b4
  article-title: Discriminative predicate path mining for fact checking in knowledge graphs
  publication-title: Knowl.-based Syst.
– start-page: 697
  year: 2008
  end-page: 704
  ident: b12
  article-title: Exploiting constituent dependencies for tree kernel-based semantic relation extraction
  publication-title: Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1
– year: 2018
  ident: b26
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– volume: 100
  start-page: 188
  year: 2016
  end-page: 199
  ident: b7
  article-title: A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm
  publication-title: Knowl.-Based Syst.
– start-page: 724
  year: 2005
  end-page: 731
  ident: b13
  article-title: A shortest path dependency kernel for relation extraction
  publication-title: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing
– volume: 49
  start-page: 16
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2020.105488_b18
  article-title: Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1179-1
– year: 2018
  ident: 10.1016/j.knosys.2020.105488_b48
– year: 2015
  ident: 10.1016/j.knosys.2020.105488_b42
– start-page: 541
  year: 2011
  ident: 10.1016/j.knosys.2020.105488_b16
  article-title: Knowledge-based weak supervision for information extraction of overlapping relations
– start-page: 1003
  year: 2009
  ident: 10.1016/j.knosys.2020.105488_b14
  article-title: Distant supervision for relation extraction without labeled data
– start-page: 3111
  year: 2013
  ident: 10.1016/j.knosys.2020.105488_b37
  article-title: Distributed representations of words and phrases and their compositionality
– year: 2016
  ident: 10.1016/j.knosys.2020.105488_b19
– year: 2019
  ident: 10.1016/j.knosys.2020.105488_b46
– start-page: 782
  year: 2009
  ident: 10.1016/j.knosys.2020.105488_b32
  article-title: Unsupervised relation extraction by massive clustering
– ident: 10.1016/j.knosys.2020.105488_b41
  doi: 10.18653/v1/D13-1137
– volume: 441
  start-page: 41
  year: 2018
  ident: 10.1016/j.knosys.2020.105488_b21
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.051
– year: 2018
  ident: 10.1016/j.knosys.2020.105488_b45
– year: 2019
  ident: 10.1016/j.knosys.2020.105488_b23
– start-page: 712
  year: 2006
  ident: 10.1016/j.knosys.2020.105488_b11
  article-title: Combining linguistic and statistical analysis to extract relations from web documents
– ident: 10.1016/j.knosys.2020.105488_b29
– year: 2015
  ident: 10.1016/j.knosys.2020.105488_b22
– ident: 10.1016/j.knosys.2020.105488_b6
– volume: 100
  start-page: 188
  year: 2016
  ident: 10.1016/j.knosys.2020.105488_b7
  article-title: A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.03.008
– ident: 10.1016/j.knosys.2020.105488_b35
  doi: 10.3115/v1/P14-2012
– start-page: 148
  year: 2010
  ident: 10.1016/j.knosys.2020.105488_b15
  article-title: Modeling relations and their mentions without labeled text
– ident: 10.1016/j.knosys.2020.105488_b31
– ident: 10.1016/j.knosys.2020.105488_b52
– year: 2019
  ident: 10.1016/j.knosys.2020.105488_b44
– start-page: 724
  year: 2005
  ident: 10.1016/j.knosys.2020.105488_b13
  article-title: A shortest path dependency kernel for relation extraction
– ident: 10.1016/j.knosys.2020.105488_b38
  doi: 10.3115/v1/D14-1162
– year: 2018
  ident: 10.1016/j.knosys.2020.105488_b47
– year: 2019
  ident: 10.1016/j.knosys.2020.105488_b8
  article-title: Transportation sentiment analysis using word embedding and ontology-based topic modeling
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.02.033
– start-page: 152
  year: 2010
  ident: 10.1016/j.knosys.2020.105488_b34
  article-title: Exploiting background knowledge for relation extraction
– ident: 10.1016/j.knosys.2020.105488_b20
– start-page: 256
  year: 2010
  ident: 10.1016/j.knosys.2020.105488_b50
  article-title: Utd: Classifying semantic relations by combining lexical and semantic resources
– volume: 433
  start-page: 241
  year: 2018
  ident: 10.1016/j.knosys.2020.105488_b25
  article-title: Convolutional networks with cross-layer neurons for image recognition
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.12.045
– year: 2019
  ident: 10.1016/j.knosys.2020.105488_b27
– volume: 486
  start-page: 231
  year: 2019
  ident: 10.1016/j.knosys.2020.105488_b17
  article-title: Computer aided detection for fibrillations and flutters using deep convolutional neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.065
– start-page: 105030
  year: 2019
  ident: 10.1016/j.knosys.2020.105488_b9
  article-title: Word sense disambiguation: A comprehensive knowledge exploitation framework
  publication-title: Knowl.-Based Syst.
– ident: 10.1016/j.knosys.2020.105488_b1
  doi: 10.1109/ICCV.2015.279
– start-page: 172
  year: 1998
  ident: 10.1016/j.knosys.2020.105488_b30
  article-title: Extracting patterns and relations from the world wide web
– start-page: 22
  year: 2004
  ident: 10.1016/j.knosys.2020.105488_b10
  article-title: Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations
– year: 2018
  ident: 10.1016/j.knosys.2020.105488_b26
– year: 2019
  ident: 10.1016/j.knosys.2020.105488_b28
– year: 2015
  ident: 10.1016/j.knosys.2020.105488_b40
– volume: 136
  start-page: 172
  year: 2017
  ident: 10.1016/j.knosys.2020.105488_b5
  article-title: Compositional approaches for representing relations between words: A comparative study
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.09.008
– volume: 93
  start-page: 75
  year: 2016
  ident: 10.1016/j.knosys.2020.105488_b2
  article-title: Learning semantic representation with neural networks for community question answering retrieval
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.11.002
– volume: 104
  start-page: 123
  year: 2016
  ident: 10.1016/j.knosys.2020.105488_b4
  article-title: Discriminative predicate path mining for fact checking in knowledge graphs
  publication-title: Knowl.-based Syst.
  doi: 10.1016/j.knosys.2016.04.015
– year: 2014
  ident: 10.1016/j.knosys.2020.105488_b39
– year: 2018
  ident: 10.1016/j.knosys.2020.105488_b33
– year: 2013
  ident: 10.1016/j.knosys.2020.105488_b36
– ident: 10.1016/j.knosys.2020.105488_b3
  doi: 10.1109/CVPR.2016.10
– start-page: 697
  year: 2008
  ident: 10.1016/j.knosys.2020.105488_b12
  article-title: Exploiting constituent dependencies for tree kernel-based semantic relation extraction
– ident: 10.1016/j.knosys.2020.105488_b24
  doi: 10.18653/v1/P16-2034
– ident: 10.1016/j.knosys.2020.105488_b43
  doi: 10.18653/v1/D15-1206
– start-page: 1201
  year: 2012
  ident: 10.1016/j.knosys.2020.105488_b51
  article-title: Semantic compositionality through recursive matrix-vector spaces
– start-page: 94
  year: 2009
  ident: 10.1016/j.knosys.2020.105488_b49
  article-title: Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals
SSID ssj0002218
Score 2.4370952
Snippet Semantic relation extraction between entity pairs is a crucial task in information extraction from text. In this paper, we propose a new pre-trained network...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105488
SubjectTerms Attention
Computer architecture
Convolutional neural networks
Embedding
Extraction
Information retrieval
Natural language processing
Relation extraction
Semantic relation
Semantic relations
Semantics
Title A comprehensive exploration of semantic relation extraction via pre-trained CNNs
URI https://dx.doi.org/10.1016/j.knosys.2020.105488
https://www.proquest.com/docview/2444992432
Volume 194
WOSCitedRecordID wos000534581300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg44EXGF9isCE_IN48JbabxI8V6sRGFIbUib5ZieOIjpGWtkz78zl_Jen4GDzwYrV23Lp3P9-dr-c7hF6rErR6NcoIrxWHhiWwpbggsRoJlSQ6qri9KJynRZHNZuLM-3TXtpxA2rbZ9bVY_ldWQx8w21yd_Qd2dx8KHfAamA4tsB3av2L82IaJr_RnH5qubZRdZxmu9Vcgpk3c7MLg4IHNylcMv5qXJmsAsYUjjO-3KNZD8_V98MARo_1qnwe6M8tzGxrwMWjDriefX857z72TLp-0icG5OXPohKAmIpTQ_sja3Y4JAqkPSXKuxoikkU8sq52gzVKw7HkktiSx4ANZGv9Swjtnw8XRl3YBv_HILMbUKuauOOB2Qu3igzw-z3M5ncymb5bfiKk1Zv6T94VX7qJdmo4EyMLd8clkdtppcEqtX7hbd7hyaeMCf_7i35k0N5S7tVime-iBP2rgsYPII3RHt4_Rw1DGA3siPkFnY7yFGDxADF40OCAGB8TgHjEYEIMHiMEGMU_R-fFk-vYd8YU2iGKMb0hTR0nVCK2iTKhY00arTLGmNLZupEdxnanGGJqiUhre17DxYwWS2yQ-0qxS7BnaaRetfo4wjGiewRmcJiVP01JkSSmYUiyqGW14so9YoJVUPgu9WeGlDOGGF9JRWBoKS0fhfUS6WUuXheWW59PABuktSWchSoDRLTMPAtek39QwzjkXgnJGX_x5-CW63--OA7SzWX3Xh-ieutrM16tXHmY_ADxdnys
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+exploration+of+semantic+relation+extraction+via+pre-trained+CNNs&rft.jtitle=Knowledge-based+systems&rft.au=Li%2C+Qing&rft.au=Li%2C+Lili&rft.au=Wang%2C+Weinan&rft.au=Li%2C+Qi&rft.date=2020-04-22&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=194&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.105488&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon