AMIDST: A Java toolbox for scalable probabilistic machine learning

The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic graphical models with latent variables. AMIDST provides parallel and distributed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 163; s. 595 - 597
Hlavní autoři: Masegosa, Andrés R., Martínez, Ana M., Ramos-López, Darío, Cabañas, Rafael, Salmerón, Antonio, Langseth, Helge, Nielsen, Thomas D., Madsen, Anders L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.01.2019
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic graphical models with latent variables. AMIDST provides parallel and distributed implementations of scalable algorithms for doing probabilistic inference and Bayesian parameter learning in the specified models. These algorithms are based on a flexible variational message passing scheme, which supports discrete and continuous variables from a wide range of probability distributions. •AMIDST is an open source toolbox for scalable probabilistic machine learning.•The toolbox allows the definition of PGMs with latent variables.•AMIDST contains multiple scalable inference and learning algorithms.•The variational methods provided make the toolbox suitable for data streams.•The algorithms can be run in multi-core and distributed environments.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0950-7051
1872-7409
DOI:10.1016/j.knosys.2018.09.019