AMIDST: A Java toolbox for scalable probabilistic machine learning
The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic graphical models with latent variables. AMIDST provides parallel and distributed...
Uloženo v:
| Vydáno v: | Knowledge-based systems Ročník 163; s. 595 - 597 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.01.2019
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0950-7051, 1872-7409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The AMIDST Toolbox is an open source Java software for scalable probabilistic machine learning with a special focus on (massive) streaming data. The toolbox supports a flexible modelling language based on probabilistic graphical models with latent variables. AMIDST provides parallel and distributed implementations of scalable algorithms for doing probabilistic inference and Bayesian parameter learning in the specified models. These algorithms are based on a flexible variational message passing scheme, which supports discrete and continuous variables from a wide range of probability distributions.
•AMIDST is an open source toolbox for scalable probabilistic machine learning.•The toolbox allows the definition of PGMs with latent variables.•AMIDST contains multiple scalable inference and learning algorithms.•The variational methods provided make the toolbox suitable for data streams.•The algorithms can be run in multi-core and distributed environments. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0950-7051 1872-7409 |
| DOI: | 10.1016/j.knosys.2018.09.019 |