An improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy

The main goal of multi-objective optimization evolutionary algorithms (MOEAs) is to obtain a set of solutions with good diversity and convergence. However, how to concurrently improve the diversity and convergence is a difficult work. To address this problem, an updated strategy based on decompositi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 163; S. 572 - 580
Hauptverfasser: Dong, Ning, Dai, Cai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.01.2019
Elsevier Science Ltd
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The main goal of multi-objective optimization evolutionary algorithms (MOEAs) is to obtain a set of solutions with good diversity and convergence. However, how to concurrently improve the diversity and convergence is a difficult work. To address this problem, an updated strategy based on decomposition is used to maintain the diversity, and the convergence is enhanced by improving the search efficiency. In this paper, an improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy is aimed at improving the search efficiency. In this work, three search strategies are used to help crossover operators to carry out the local search and global search. This multi-search strategy selects sparse non-dominated solutions to carry out the exploration, and selects convergent solutions to implement the exploitation. In the experiments, the proposed algorithm is compared with seven efficient state-of-the-art algorithms, e.g., NSGAII, MOEA/D, MOEA-DVA, MOEA-IGD-NS, MOEA/D-PaS, RVEA and MPSOD, on twenty-two benchmark functions. Empirical results show that the proposed algorithm can find a set of solutions with better diversity and convergence than six compared algorithms.
AbstractList The main goal of multi-objective optimization evolutionary algorithms (MOEAs) is to obtain a set of solutions with good diversity and convergence. However, how to concurrently improve the diversity and convergence is a difficult work. To address this problem, an updated strategy based on decomposition is used to maintain the diversity, and the convergence is enhanced by improving the search efficiency. In this paper, an improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy is aimed at improving the search efficiency. In this work, three search strategies are used to help crossover operators to carry out the local search and global search. This multi-search strategy selects sparse non-dominated solutions to carry out the exploration, and selects convergent solutions to implement the exploitation. In the experiments, the proposed algorithm is compared with seven efficient state-of-the-art algorithms, e.g., NSGAII, MOEA/D, MOEA-DVA, MOEA-IGD-NS, MOEA/D-PaS, RVEA and MPSOD, on twenty-two benchmark functions. Empirical results show that the proposed algorithm can find a set of solutions with better diversity and convergence than six compared algorithms.
Author Dong, Ning
Dai, Cai
Author_xml – sequence: 1
  givenname: Ning
  surname: Dong
  fullname: Dong, Ning
  email: dongning@snnu.edu.cn
  organization: School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710119, China
– sequence: 2
  givenname: Cai
  surname: Dai
  fullname: Dai, Cai
  email: cdai0320@snnu.edu.cn
  organization: School of Computer Science, Shaanxi Normal University, Xi’an, 710119, China
BookMark eNqFkDFv2zAQhYnAAeK4-QcZBHSWcqQoyexQwAjapkCALu1MUNTRpiKRLkkZ8L8vDWfq0E5vuPfu7n33ZOW8Q0IeKVQUaPs0Vm_Ox3OsGNBtBaLKckPWdNuxsuMgVmQNooGyg4bekfsYRwBgjG7XBHeusPMx-BPO6FIxoPbz0UebrHdlryIOxbxMyZa-H1Ene8ICT35aLnMVzoWa9j7YdJiLJVq3fzdHVEEfipiCSrg_fyC3Rk0RH951Q359_fLz-aV8_fHt-_PutdR1zVNpBKfQYC1M_q3vWq5rqphSBgxnaFBx6IRoRcuZMqbnzRYpV4aZrh8oGl1vyMfr3lzo94IxydEvweWTktG2gZa1HLKLX106-BgDGnkMds5lJAV5ASpHeQUqL0AlCJklxz79FdM2qQuH3NJO_wt_voYx1z9ZDDJqi07jYEPGKgdv_73gDzZVmgE
CitedBy_id crossref_primary_10_3390_a15110392
crossref_primary_10_3390_math13050817
crossref_primary_10_1016_j_eswa_2021_114886
crossref_primary_10_1109_ACCESS_2019_2917899
crossref_primary_10_1155_2020_8353154
crossref_primary_10_1016_j_knosys_2020_106177
crossref_primary_10_1016_j_knosys_2020_105806
crossref_primary_10_12677_aam_2025_142083
crossref_primary_10_1109_TSTE_2020_3025609
crossref_primary_10_1016_j_ins_2024_121364
crossref_primary_10_1016_j_knosys_2021_107819
crossref_primary_10_1016_j_swevo_2022_101226
crossref_primary_10_1016_j_swevo_2025_102006
crossref_primary_10_1017_S0269888919000134
crossref_primary_10_1016_j_swevo_2023_101389
Cites_doi 10.1016/j.asoc.2015.04.029
10.1109/TEVC.2016.2521175
10.1016/j.asoc.2017.01.056
10.1016/j.artint.2015.03.001
10.1016/j.ins.2017.08.076
10.1109/TCYB.2015.2403131
10.1016/j.cirp.2008.03.020
10.1016/j.ins.2016.01.068
10.1145/1143997.1144179
10.1109/TEVC.2016.2519378
10.1109/TCYB.2017.2692385
10.1109/TEVC.2010.2046328
10.1109/TCBB.2015.2476796
10.1016/j.ins.2017.05.012
10.1109/4235.996017
10.1109/TSMCB.2012.2209115
10.1109/TEVC.2015.2455812
10.1109/ACCESS.2015.2508940
10.1145/2480741.2480752
10.1016/j.ins.2015.07.018
10.1109/MCI.2017.2742868
10.1016/j.cor.2015.04.003
10.1016/j.knosys.2017.09.017
10.1109/TKDE.2015.2475755
10.1109/TEVC.2007.892759
10.1109/CEC.2002.1007032
10.1162/106365600568202
10.1162/EVCO_a_00038
10.1109/TEVC.2003.810758
10.1109/TETCI.2017.2669104
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 1, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 1, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2018.09.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 580
ExternalDocumentID 10_1016_j_knosys_2018_09_018
S0950705118304684
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c334t-f94105e39f218b764c31a2aaf0f42efea4079969642affb458e14af2f7bd1efc3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454468200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 19:18:32 EST 2025
Sat Nov 29 07:46:27 EST 2025
Tue Nov 18 20:51:18 EST 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-search strategy
Multi-objective optimization
Decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-f94105e39f218b764c31a2aaf0f42efea4079969642affb458e14af2f7bd1efc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2165062640
PQPubID 2035257
PageCount 9
ParticipantIDs proquest_journals_2165062640
crossref_primary_10_1016_j_knosys_2018_09_018
crossref_citationtrail_10_1016_j_knosys_2018_09_018
elsevier_sciencedirect_doi_10_1016_j_knosys_2018_09_018
PublicationCentury 2000
PublicationDate 2019-01-01
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Coello Coello, Van Veldhuizen, Lamont (b8) 2002
Dai, Wang, Ye (b30) 2015; 325
Wang, Zhang, Zhang (b33) 2016; 20
Shang, Jiao, Liu, Ma (b21) 2012; 16
Ma, Liu, Qi, Wang, Li, Jiao, Yin, Gong (b31) 2016; 20
Han, Lu, Qiao (b18) 2017; 47
Wang, Tang (b20) 2016; 348
Palaniappan, Zein-Sabatto, Sekmen (b6) 2001
Kiani, Pourtakdoust (b16) 2015; 34
Cheng, Rodemann, Fischer, Olhofer, Jin (b1) 2017; 1
Ming, Wang, Zha, Zhang (b26) 2017; 414
Tian, Cheng, Zhang, Jin (b40) 2017; 12
Li, Landa-Silva (b9) 2011; 19
Robert, Torrie, Dickey (b39) 1997
Črepinšek, Liu, Mernik (b41) 2013; 45
Xue, Wang (b5) 2016; 28
Cheng, Jin, Olhofer, Sendhoff (b34) 2016; 20
K. Deb, A. Sinha, S. Kukkonen, Multi-objective test problems, linkages, and evolutionary methodologies, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation-GECCO’06, Seattle, WA, 2006, pp. 1141–1148.
Zhang, Li (b25) 2007; 11
Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multiobjective evolutionary algorithm based on an enhanced inverted generational distance metric, in: Proc. IEEE Congr. Evolutionary Computation, 2016, pp. 5222–5229, 2016.
Zhan, Li, Cao, Zhang, Chung, Shi (b22) 2013; 43
Van Veldhuizen (b28) 1999
Xue, Wang (b7) 2015; 223
Zhang, Suganthan (b36) 2009
Zuo, Shu, Dong, Zhu, Hara (b10) 2015; 3
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multiobjective optimization test problems, in: Proceedings of IEEE Congress on Evolutionary Computation, 2002, pp. 825–830.
Zitzler, Thiele, Laumanns, Fonseca, Fonseca (b37) 2003; 7
Zhang, Zhang, Gao, Song (b23) 2016; 1868–1884
Xue, Liu (b2) 2017; 137
Roy, Mehnen (b3) 2008; 57
Jiang, Yang (b24) 2016; 46
Zitzler, Deb, Thiele (b35) 2000; 8
Lin, Zhu (b19) 2015; 62
Tang, Zhu, Shin, Tsourdos, Luo (b17) 2017; 420
Maalawi (b4) 2011
Ma, Liu, Qi, Wang, Li, Jiao, Yin, Gong (b14) 2016; 20
Zitzler, Deb, Thiele (b29) 2000; 8
Zhang, Gong, Cheng (b11) 2017; 14
Deb, Pratap, Agrawal, Meyarivan (b15) 2002; 6
Mashwani, Salhi, Asif, Adeeb, Sulaiman (b12) 2015; 6
Mashwani, Salhi, Yeniay, Hussian, Jan (b13) 2017; 56
Coello Coello (10.1016/j.knosys.2018.09.018_b8) 2002
Zuo (10.1016/j.knosys.2018.09.018_b10) 2015; 3
Ming (10.1016/j.knosys.2018.09.018_b26) 2017; 414
Van Veldhuizen (10.1016/j.knosys.2018.09.018_b28) 1999
Wang (10.1016/j.knosys.2018.09.018_b33) 2016; 20
10.1016/j.knosys.2018.09.018_b38
Shang (10.1016/j.knosys.2018.09.018_b21) 2012; 16
10.1016/j.knosys.2018.09.018_b32
Robert (10.1016/j.knosys.2018.09.018_b39) 1997
Zhang (10.1016/j.knosys.2018.09.018_b25) 2007; 11
Tian (10.1016/j.knosys.2018.09.018_b40) 2017; 12
Mashwani (10.1016/j.knosys.2018.09.018_b12) 2015; 6
Maalawi (10.1016/j.knosys.2018.09.018_b4) 2011
Xue (10.1016/j.knosys.2018.09.018_b2) 2017; 137
Cheng (10.1016/j.knosys.2018.09.018_b1) 2017; 1
Cheng (10.1016/j.knosys.2018.09.018_b34) 2016; 20
Črepinšek (10.1016/j.knosys.2018.09.018_b41) 2013; 45
Roy (10.1016/j.knosys.2018.09.018_b3) 2008; 57
Kiani (10.1016/j.knosys.2018.09.018_b16) 2015; 34
Dai (10.1016/j.knosys.2018.09.018_b30) 2015; 325
Xue (10.1016/j.knosys.2018.09.018_b5) 2016; 28
Ma (10.1016/j.knosys.2018.09.018_b31) 2016; 20
Li (10.1016/j.knosys.2018.09.018_b9) 2011; 19
Lin (10.1016/j.knosys.2018.09.018_b19) 2015; 62
Jiang (10.1016/j.knosys.2018.09.018_b24) 2016; 46
10.1016/j.knosys.2018.09.018_b27
Ma (10.1016/j.knosys.2018.09.018_b14) 2016; 20
Xue (10.1016/j.knosys.2018.09.018_b7) 2015; 223
Palaniappan (10.1016/j.knosys.2018.09.018_b6) 2001
Deb (10.1016/j.knosys.2018.09.018_b15) 2002; 6
Zhan (10.1016/j.knosys.2018.09.018_b22) 2013; 43
Tang (10.1016/j.knosys.2018.09.018_b17) 2017; 420
Wang (10.1016/j.knosys.2018.09.018_b20) 2016; 348
Zitzler (10.1016/j.knosys.2018.09.018_b35) 2000; 8
Zitzler (10.1016/j.knosys.2018.09.018_b29) 2000; 8
Zhang (10.1016/j.knosys.2018.09.018_b23) 2016; 1868–1884
Zhang (10.1016/j.knosys.2018.09.018_b11) 2017; 14
Zitzler (10.1016/j.knosys.2018.09.018_b37) 2003; 7
Han (10.1016/j.knosys.2018.09.018_b18) 2017; 47
Zhang (10.1016/j.knosys.2018.09.018_b36) 2009
Mashwani (10.1016/j.knosys.2018.09.018_b13) 2017; 56
References_xml – volume: 14
  start-page: 64
  year: 2017
  end-page: 75
  ident: b11
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 20
  start-page: 275
  year: 2016
  end-page: 298
  ident: b14
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Trans. Evol. Comput.
– year: 2011
  ident: b4
  article-title: Special Issues on Design Optimization of Wind Turbine Structures
– volume: 414
  start-page: 158
  year: 2017
  end-page: 174
  ident: b26
  article-title: Pareto adaptive penalty-based boundary intersection method for multi-objective optimization
  publication-title: Inf. Sci.
– volume: 57
  start-page: 429
  year: 2008
  end-page: 432
  ident: b3
  article-title: Dynamic multi-objective optimisation for machining gradient materials
  publication-title: CIRP Ann.-Manuf. Technol.
– volume: 1868–1884
  year: 2016
  ident: b23
  article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble
  publication-title: Neurocomputing
– volume: 56
  start-page: 1
  year: 2017
  end-page: 18
  ident: b13
  article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 97
  year: 2017
  end-page: 111
  ident: b1
  article-title: Evolutionary many-objective optimization of hybrid electric vehicle control: From general optimization to preference articulation
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 6
  start-page: 279
  year: 2015
  end-page: 287
  ident: b12
  article-title: Enhanced version of multi-algorithm genetically adaptive for multiobjective optimization
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 420
  start-page: 364
  year: 2017
  end-page: 385
  ident: b17
  article-title: A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm
  publication-title: Inform. Sci.
– start-page: 160
  year: 2001
  end-page: 165
  ident: b6
  article-title: Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms
  publication-title: Proceedings of 2001 IEEE SoutheastCon
– volume: 62
  start-page: 95
  year: 2015
  end-page: 111
  ident: b19
  article-title: A novel hybrid multi-objective immune algorithm with adaptive differential evolution
  publication-title: Comput. Oper. Res.
– volume: 45
  year: 2013
  ident: b41
  article-title: Exploration and exploitation in evolutionary algorithms: A Survey
  publication-title: ACM Comput. Surv.
– volume: 137
  start-page: 94
  year: 2017
  end-page: 103
  ident: b2
  article-title: Collaborative ontology matching based on compact interactive evolutionary algorithm
  publication-title: Knowl.-Based Syst.
– volume: 348
  start-page: 124
  year: 2016
  end-page: 141
  ident: b20
  article-title: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization
  publication-title: Inform. Sci.
– volume: 34
  start-page: 1
  year: 2015
  end-page: 17
  ident: b16
  article-title: State estimation of nonlinear dynamic systems using weighted varlance-based adaptive particle swarm optimization
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b29
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
– volume: 20
  start-page: 275
  year: 2016
  end-page: 298
  ident: b31
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Trans. Evol. Comput.
– volume: 16
  start-page: 35
  year: 2012
  end-page: 50
  ident: b21
  article-title: A novel immun clonal algorithm for MO problems
  publication-title: IEEE Trans. Evol. Comput.
– reference: Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multiobjective evolutionary algorithm based on an enhanced inverted generational distance metric, in: Proc. IEEE Congr. Evolutionary Computation, 2016, pp. 5222–5229, 2016.
– volume: 19
  start-page: 561
  year: 2011
  end-page: 595
  ident: b9
  article-title: An adaptive evolutionary multi-objective approach based on simulated annealing
  publication-title: Evol. Comput.
– volume: 3
  start-page: 2687
  year: 2015
  end-page: 2699
  ident: b10
  article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing
  publication-title: IEEE Access
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b40
  article-title: PlateEMO: A matlab platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 20
  start-page: 821
  year: 2016
  end-page: 837
  ident: b33
  article-title: Decomposition based algorithms using Pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 2754
  year: 2017
  end-page: 2767
  ident: b18
  article-title: An adaptive multiobjective particle swarm optimization based on multiple adaptive methods
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b35
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
– year: 2002
  ident: b8
  article-title: Evolutionary Algorithms for Solving Multiobjective Problems
– year: 2009
  ident: b36
  article-title: Final report on CEC’09 MOEA competition
  publication-title: Technical Report
– year: 1999
  ident: b28
  article-title: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations
– volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: b37
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b34
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b15
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 223
  start-page: 65
  year: 2015
  end-page: 81
  ident: b7
  article-title: Optimizing ontology alignments through a memetic algorithm using both matchfmeasure and unanimous improvement ratio
  publication-title: Artificial Intelligence
– volume: 46
  start-page: 421
  year: 2016
  end-page: 437
  ident: b24
  article-title: An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts
  publication-title: IEEE Trans. Cybern.
– reference: K. Deb, A. Sinha, S. Kukkonen, Multi-objective test problems, linkages, and evolutionary methodologies, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation-GECCO’06, Seattle, WA, 2006, pp. 1141–1148.
– volume: 43
  start-page: 445
  year: 2013
  end-page: 463
  ident: b22
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 325
  start-page: 541
  year: 2015
  end-page: 557
  ident: b30
  article-title: A new multi-objective particle swarm optimization algorithm based on decomposition
  publication-title: Inform. Sci.
– volume: 28
  start-page: 580
  year: 2016
  end-page: 591
  ident: b5
  article-title: Using memetic algorithm for instance coreference resolution
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b25
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposi-tion
  publication-title: IEEE Trans. Evol. Comput.
– reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multiobjective optimization test problems, in: Proceedings of IEEE Congress on Evolutionary Computation, 2002, pp. 825–830.
– year: 1997
  ident: b39
  article-title: Principles and Procedures of Statistics: A Biometrical Approach
– year: 2002
  ident: 10.1016/j.knosys.2018.09.018_b8
– volume: 6
  start-page: 279
  issue: 12
  year: 2015
  ident: 10.1016/j.knosys.2018.09.018_b12
  article-title: Enhanced version of multi-algorithm genetically adaptive for multiobjective optimization
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 34
  start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2018.09.018_b16
  article-title: State estimation of nonlinear dynamic systems using weighted varlance-based adaptive particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.04.029
– volume: 20
  start-page: 821
  issue: 6
  year: 2016
  ident: 10.1016/j.knosys.2018.09.018_b33
  article-title: Decomposition based algorithms using Pareto adaptive scalarizing methods
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2521175
– volume: 56
  start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2018.09.018_b13
  article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.056
– volume: 223
  start-page: 65
  year: 2015
  ident: 10.1016/j.knosys.2018.09.018_b7
  article-title: Optimizing ontology alignments through a memetic algorithm using both matchfmeasure and unanimous improvement ratio
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2015.03.001
– volume: 1868–1884
  year: 2016
  ident: 10.1016/j.knosys.2018.09.018_b23
  article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble
  publication-title: Neurocomputing
– volume: 420
  start-page: 364
  year: 2017
  ident: 10.1016/j.knosys.2018.09.018_b17
  article-title: A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.08.076
– volume: 46
  start-page: 421
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2018.09.018_b24
  article-title: An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2403131
– volume: 57
  start-page: 429
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2018.09.018_b3
  article-title: Dynamic multi-objective optimisation for machining gradient materials
  publication-title: CIRP Ann.-Manuf. Technol.
  doi: 10.1016/j.cirp.2008.03.020
– start-page: 160
  year: 2001
  ident: 10.1016/j.knosys.2018.09.018_b6
  article-title: Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms
– volume: 348
  start-page: 124
  year: 2016
  ident: 10.1016/j.knosys.2018.09.018_b20
  article-title: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.01.068
– ident: 10.1016/j.knosys.2018.09.018_b38
  doi: 10.1145/1143997.1144179
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2018.09.018_b34
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 47
  start-page: 2754
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2018.09.018_b18
  article-title: An adaptive multiobjective particle swarm optimization based on multiple adaptive methods
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2692385
– volume: 16
  start-page: 35
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2018.09.018_b21
  article-title: A novel immun clonal algorithm for MO problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2046328
– volume: 14
  start-page: 64
  issue: 1
  year: 2017
  ident: 10.1016/j.knosys.2018.09.018_b11
  article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2015.2476796
– volume: 414
  start-page: 158
  year: 2017
  ident: 10.1016/j.knosys.2018.09.018_b26
  article-title: Pareto adaptive penalty-based boundary intersection method for multi-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.05.012
– year: 2011
  ident: 10.1016/j.knosys.2018.09.018_b4
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.knosys.2018.09.018_b15
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 43
  start-page: 445
  issue: 2
  year: 2013
  ident: 10.1016/j.knosys.2018.09.018_b22
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2209115
– volume: 20
  start-page: 275
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2018.09.018_b31
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2455812
– volume: 3
  start-page: 2687
  year: 2015
  ident: 10.1016/j.knosys.2018.09.018_b10
  article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2508940
– volume: 45
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2018.09.018_b41
  article-title: Exploration and exploitation in evolutionary algorithms: A Survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2480741.2480752
– year: 1999
  ident: 10.1016/j.knosys.2018.09.018_b28
– volume: 325
  start-page: 541
  year: 2015
  ident: 10.1016/j.knosys.2018.09.018_b30
  article-title: A new multi-objective particle swarm optimization algorithm based on decomposition
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.07.018
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2018.09.018_b40
  article-title: PlateEMO: A matlab platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– year: 1997
  ident: 10.1016/j.knosys.2018.09.018_b39
– volume: 20
  start-page: 275
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2018.09.018_b14
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2455812
– volume: 62
  start-page: 95
  year: 2015
  ident: 10.1016/j.knosys.2018.09.018_b19
  article-title: A novel hybrid multi-objective immune algorithm with adaptive differential evolution
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.04.003
– ident: 10.1016/j.knosys.2018.09.018_b32
– volume: 137
  start-page: 94
  year: 2017
  ident: 10.1016/j.knosys.2018.09.018_b2
  article-title: Collaborative ontology matching based on compact interactive evolutionary algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.09.017
– volume: 28
  start-page: 580
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2018.09.018_b5
  article-title: Using memetic algorithm for instance coreference resolution
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2475755
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.knosys.2018.09.018_b25
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposi-tion
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– ident: 10.1016/j.knosys.2018.09.018_b27
  doi: 10.1109/CEC.2002.1007032
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.knosys.2018.09.018_b29
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– volume: 19
  start-page: 561
  issue: 4
  year: 2011
  ident: 10.1016/j.knosys.2018.09.018_b9
  article-title: An adaptive evolutionary multi-objective approach based on simulated annealing
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00038
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.knosys.2018.09.018_b35
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  ident: 10.1016/j.knosys.2018.09.018_b37
  article-title: Performance assessment of multiobjective optimizers: An analysis and review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– volume: 1
  start-page: 97
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2018.09.018_b1
  article-title: Evolutionary many-objective optimization of hybrid electric vehicle control: From general optimization to preference articulation
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2669104
– year: 2009
  ident: 10.1016/j.knosys.2018.09.018_b36
  article-title: Final report on CEC’09 MOEA competition
SSID ssj0002218
Score 2.2959583
Snippet The main goal of multi-objective optimization evolutionary algorithms (MOEAs) is to obtain a set of solutions with good diversity and convergence. However, how...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 572
SubjectTerms Algorithms
Convergence
Crossovers
Decomposition
Evolutionary algorithms
Experiments
Exploitation
Genetic algorithms
Global local relationship
Multi-objective optimization
Multi-search strategy
Multiple objective analysis
Objectives
Operators
Optimization
Search methods
Search strategies
State of the art
Strategies
Strategy
Title An improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy
URI https://dx.doi.org/10.1016/j.knosys.2018.09.018
https://www.proquest.com/docview/2165062640
Volume 163
WOSCitedRecordID wos000454468200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VlAMXoCyipVRzQFyiQV7GyxwjlIolChxSKbfR2J6BpMUOiVv15_fN5jottHDgYlve4sx7fsvnb95D6G1KAyXAbRGVFILQKCtJLjWIo2RAJZUyFKZk_iSbTvP5nH1zUPbGtBPI6jq_vGSr_ypq2AfC1lNn_0Hc3U1hB2yD0GEJYoflXwl-VOupj-vGFAJvh5XUrHFHzSLaaVWWRUiaYmmt3VBeuCfSFDpx9r1ZL9ofP4fnBkewJzt0ZGOL2W59C_7iYTl3902vCLoOkR3pd-qdpMHFF5ZtsuijDnqi0xbq0E2H8RbomoNkscWAZIGrJCutZc0zCOVpwLZMrzNu1ngmtonPLaNu8YXl-9O6gX-g6Xi5qU3rDPdWDe3pV358Mpnw2Xg-e7f6RXR7Mf0Z3vVaeYB2oyxh-QDtjj6N5587px1FBgruntzPsjRUwNs__Kco5oY_N0HK7Cl67LILPLJasYd2ZP0MPfGdO7AbxudIjmrcUxL8GyXBN5QE95UEd0qCjZLgvpJgryQv0MnxePbhI3ENN0gZx7QlimnSr4yZgtEospSWcSgiIVSgaCSVFJD9M11OiUZCqYImuQypUJHKiiqUqoxfokHd1PIVwmkeKZnLSlS0oiytmCpEGCcpuAdIGBTdR7EfQF66avS6KcoZ97TDJbfDzvWw84BxWO0j0l21stVY7jk_87LhLqK0kSIH3brnykMvSu5ebjgeQj6TQgoRHNx9-DV6dP3SHKJBuz6Xb9DD8qJdbNZHTveuALsCpw8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improvement+decomposition-based+multi-objective+evolutionary+algorithm+using+multi-search+strategy&rft.jtitle=Knowledge-based+systems&rft.au=Dong%2C+Ning&rft.au=Dai%2C+Cai&rft.date=2019-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=163&rft.spage=572&rft_id=info:doi/10.1016%2Fj.knosys.2018.09.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon