An improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy
The main goal of multi-objective optimization evolutionary algorithms (MOEAs) is to obtain a set of solutions with good diversity and convergence. However, how to concurrently improve the diversity and convergence is a difficult work. To address this problem, an updated strategy based on decompositi...
Gespeichert in:
| Veröffentlicht in: | Knowledge-based systems Jg. 163; S. 572 - 580 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.01.2019
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The main goal of multi-objective optimization evolutionary algorithms (MOEAs) is to obtain a set of solutions with good diversity and convergence. However, how to concurrently improve the diversity and convergence is a difficult work. To address this problem, an updated strategy based on decomposition is used to maintain the diversity, and the convergence is enhanced by improving the search efficiency. In this paper, an improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy is aimed at improving the search efficiency. In this work, three search strategies are used to help crossover operators to carry out the local search and global search. This multi-search strategy selects sparse non-dominated solutions to carry out the exploration, and selects convergent solutions to implement the exploitation. In the experiments, the proposed algorithm is compared with seven efficient state-of-the-art algorithms, e.g., NSGAII, MOEA/D, MOEA-DVA, MOEA-IGD-NS, MOEA/D-PaS, RVEA and MPSOD, on twenty-two benchmark functions. Empirical results show that the proposed algorithm can find a set of solutions with better diversity and convergence than six compared algorithms. |
|---|---|
| AbstractList | The main goal of multi-objective optimization evolutionary algorithms (MOEAs) is to obtain a set of solutions with good diversity and convergence. However, how to concurrently improve the diversity and convergence is a difficult work. To address this problem, an updated strategy based on decomposition is used to maintain the diversity, and the convergence is enhanced by improving the search efficiency. In this paper, an improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy is aimed at improving the search efficiency. In this work, three search strategies are used to help crossover operators to carry out the local search and global search. This multi-search strategy selects sparse non-dominated solutions to carry out the exploration, and selects convergent solutions to implement the exploitation. In the experiments, the proposed algorithm is compared with seven efficient state-of-the-art algorithms, e.g., NSGAII, MOEA/D, MOEA-DVA, MOEA-IGD-NS, MOEA/D-PaS, RVEA and MPSOD, on twenty-two benchmark functions. Empirical results show that the proposed algorithm can find a set of solutions with better diversity and convergence than six compared algorithms. |
| Author | Dong, Ning Dai, Cai |
| Author_xml | – sequence: 1 givenname: Ning surname: Dong fullname: Dong, Ning email: dongning@snnu.edu.cn organization: School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710119, China – sequence: 2 givenname: Cai surname: Dai fullname: Dai, Cai email: cdai0320@snnu.edu.cn organization: School of Computer Science, Shaanxi Normal University, Xi’an, 710119, China |
| BookMark | eNqFkDFv2zAQhYnAAeK4-QcZBHSWcqQoyexQwAjapkCALu1MUNTRpiKRLkkZ8L8vDWfq0E5vuPfu7n33ZOW8Q0IeKVQUaPs0Vm_Ox3OsGNBtBaLKckPWdNuxsuMgVmQNooGyg4bekfsYRwBgjG7XBHeusPMx-BPO6FIxoPbz0UebrHdlryIOxbxMyZa-H1Ene8ICT35aLnMVzoWa9j7YdJiLJVq3fzdHVEEfipiCSrg_fyC3Rk0RH951Q359_fLz-aV8_fHt-_PutdR1zVNpBKfQYC1M_q3vWq5rqphSBgxnaFBx6IRoRcuZMqbnzRYpV4aZrh8oGl1vyMfr3lzo94IxydEvweWTktG2gZa1HLKLX106-BgDGnkMds5lJAV5ASpHeQUqL0AlCJklxz79FdM2qQuH3NJO_wt_voYx1z9ZDDJqi07jYEPGKgdv_73gDzZVmgE |
| CitedBy_id | crossref_primary_10_3390_a15110392 crossref_primary_10_3390_math13050817 crossref_primary_10_1016_j_eswa_2021_114886 crossref_primary_10_1109_ACCESS_2019_2917899 crossref_primary_10_1155_2020_8353154 crossref_primary_10_1016_j_knosys_2020_106177 crossref_primary_10_1016_j_knosys_2020_105806 crossref_primary_10_12677_aam_2025_142083 crossref_primary_10_1109_TSTE_2020_3025609 crossref_primary_10_1016_j_ins_2024_121364 crossref_primary_10_1016_j_knosys_2021_107819 crossref_primary_10_1016_j_swevo_2022_101226 crossref_primary_10_1016_j_swevo_2025_102006 crossref_primary_10_1017_S0269888919000134 crossref_primary_10_1016_j_swevo_2023_101389 |
| Cites_doi | 10.1016/j.asoc.2015.04.029 10.1109/TEVC.2016.2521175 10.1016/j.asoc.2017.01.056 10.1016/j.artint.2015.03.001 10.1016/j.ins.2017.08.076 10.1109/TCYB.2015.2403131 10.1016/j.cirp.2008.03.020 10.1016/j.ins.2016.01.068 10.1145/1143997.1144179 10.1109/TEVC.2016.2519378 10.1109/TCYB.2017.2692385 10.1109/TEVC.2010.2046328 10.1109/TCBB.2015.2476796 10.1016/j.ins.2017.05.012 10.1109/4235.996017 10.1109/TSMCB.2012.2209115 10.1109/TEVC.2015.2455812 10.1109/ACCESS.2015.2508940 10.1145/2480741.2480752 10.1016/j.ins.2015.07.018 10.1109/MCI.2017.2742868 10.1016/j.cor.2015.04.003 10.1016/j.knosys.2017.09.017 10.1109/TKDE.2015.2475755 10.1109/TEVC.2007.892759 10.1109/CEC.2002.1007032 10.1162/106365600568202 10.1162/EVCO_a_00038 10.1109/TEVC.2003.810758 10.1109/TETCI.2017.2669104 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright Elsevier Science Ltd. Jan 1, 2019 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jan 1, 2019 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2018.09.018 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 580 |
| ExternalDocumentID | 10_1016_j_knosys_2018_09_018 S0950705118304684 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c334t-f94105e39f218b764c31a2aaf0f42efea4079969642affb458e14af2f7bd1efc3 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454468200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Fri Nov 14 19:18:32 EST 2025 Sat Nov 29 07:46:27 EST 2025 Tue Nov 18 20:51:18 EST 2025 Fri Feb 23 02:18:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-search strategy Multi-objective optimization Decomposition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c334t-f94105e39f218b764c31a2aaf0f42efea4079969642affb458e14af2f7bd1efc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2165062640 |
| PQPubID | 2035257 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2165062640 crossref_primary_10_1016_j_knosys_2018_09_018 crossref_citationtrail_10_1016_j_knosys_2018_09_018 elsevier_sciencedirect_doi_10_1016_j_knosys_2018_09_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Coello Coello, Van Veldhuizen, Lamont (b8) 2002 Dai, Wang, Ye (b30) 2015; 325 Wang, Zhang, Zhang (b33) 2016; 20 Shang, Jiao, Liu, Ma (b21) 2012; 16 Ma, Liu, Qi, Wang, Li, Jiao, Yin, Gong (b31) 2016; 20 Han, Lu, Qiao (b18) 2017; 47 Wang, Tang (b20) 2016; 348 Palaniappan, Zein-Sabatto, Sekmen (b6) 2001 Kiani, Pourtakdoust (b16) 2015; 34 Cheng, Rodemann, Fischer, Olhofer, Jin (b1) 2017; 1 Ming, Wang, Zha, Zhang (b26) 2017; 414 Tian, Cheng, Zhang, Jin (b40) 2017; 12 Li, Landa-Silva (b9) 2011; 19 Robert, Torrie, Dickey (b39) 1997 Črepinšek, Liu, Mernik (b41) 2013; 45 Xue, Wang (b5) 2016; 28 Cheng, Jin, Olhofer, Sendhoff (b34) 2016; 20 K. Deb, A. Sinha, S. Kukkonen, Multi-objective test problems, linkages, and evolutionary methodologies, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation-GECCO’06, Seattle, WA, 2006, pp. 1141–1148. Zhang, Li (b25) 2007; 11 Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multiobjective evolutionary algorithm based on an enhanced inverted generational distance metric, in: Proc. IEEE Congr. Evolutionary Computation, 2016, pp. 5222–5229, 2016. Zhan, Li, Cao, Zhang, Chung, Shi (b22) 2013; 43 Van Veldhuizen (b28) 1999 Xue, Wang (b7) 2015; 223 Zhang, Suganthan (b36) 2009 Zuo, Shu, Dong, Zhu, Hara (b10) 2015; 3 K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multiobjective optimization test problems, in: Proceedings of IEEE Congress on Evolutionary Computation, 2002, pp. 825–830. Zitzler, Thiele, Laumanns, Fonseca, Fonseca (b37) 2003; 7 Zhang, Zhang, Gao, Song (b23) 2016; 1868–1884 Xue, Liu (b2) 2017; 137 Roy, Mehnen (b3) 2008; 57 Jiang, Yang (b24) 2016; 46 Zitzler, Deb, Thiele (b35) 2000; 8 Lin, Zhu (b19) 2015; 62 Tang, Zhu, Shin, Tsourdos, Luo (b17) 2017; 420 Maalawi (b4) 2011 Ma, Liu, Qi, Wang, Li, Jiao, Yin, Gong (b14) 2016; 20 Zitzler, Deb, Thiele (b29) 2000; 8 Zhang, Gong, Cheng (b11) 2017; 14 Deb, Pratap, Agrawal, Meyarivan (b15) 2002; 6 Mashwani, Salhi, Asif, Adeeb, Sulaiman (b12) 2015; 6 Mashwani, Salhi, Yeniay, Hussian, Jan (b13) 2017; 56 Coello Coello (10.1016/j.knosys.2018.09.018_b8) 2002 Zuo (10.1016/j.knosys.2018.09.018_b10) 2015; 3 Ming (10.1016/j.knosys.2018.09.018_b26) 2017; 414 Van Veldhuizen (10.1016/j.knosys.2018.09.018_b28) 1999 Wang (10.1016/j.knosys.2018.09.018_b33) 2016; 20 10.1016/j.knosys.2018.09.018_b38 Shang (10.1016/j.knosys.2018.09.018_b21) 2012; 16 10.1016/j.knosys.2018.09.018_b32 Robert (10.1016/j.knosys.2018.09.018_b39) 1997 Zhang (10.1016/j.knosys.2018.09.018_b25) 2007; 11 Tian (10.1016/j.knosys.2018.09.018_b40) 2017; 12 Mashwani (10.1016/j.knosys.2018.09.018_b12) 2015; 6 Maalawi (10.1016/j.knosys.2018.09.018_b4) 2011 Xue (10.1016/j.knosys.2018.09.018_b2) 2017; 137 Cheng (10.1016/j.knosys.2018.09.018_b1) 2017; 1 Cheng (10.1016/j.knosys.2018.09.018_b34) 2016; 20 Črepinšek (10.1016/j.knosys.2018.09.018_b41) 2013; 45 Roy (10.1016/j.knosys.2018.09.018_b3) 2008; 57 Kiani (10.1016/j.knosys.2018.09.018_b16) 2015; 34 Dai (10.1016/j.knosys.2018.09.018_b30) 2015; 325 Xue (10.1016/j.knosys.2018.09.018_b5) 2016; 28 Ma (10.1016/j.knosys.2018.09.018_b31) 2016; 20 Li (10.1016/j.knosys.2018.09.018_b9) 2011; 19 Lin (10.1016/j.knosys.2018.09.018_b19) 2015; 62 Jiang (10.1016/j.knosys.2018.09.018_b24) 2016; 46 10.1016/j.knosys.2018.09.018_b27 Ma (10.1016/j.knosys.2018.09.018_b14) 2016; 20 Xue (10.1016/j.knosys.2018.09.018_b7) 2015; 223 Palaniappan (10.1016/j.knosys.2018.09.018_b6) 2001 Deb (10.1016/j.knosys.2018.09.018_b15) 2002; 6 Zhan (10.1016/j.knosys.2018.09.018_b22) 2013; 43 Tang (10.1016/j.knosys.2018.09.018_b17) 2017; 420 Wang (10.1016/j.knosys.2018.09.018_b20) 2016; 348 Zitzler (10.1016/j.knosys.2018.09.018_b35) 2000; 8 Zitzler (10.1016/j.knosys.2018.09.018_b29) 2000; 8 Zhang (10.1016/j.knosys.2018.09.018_b23) 2016; 1868–1884 Zhang (10.1016/j.knosys.2018.09.018_b11) 2017; 14 Zitzler (10.1016/j.knosys.2018.09.018_b37) 2003; 7 Han (10.1016/j.knosys.2018.09.018_b18) 2017; 47 Zhang (10.1016/j.knosys.2018.09.018_b36) 2009 Mashwani (10.1016/j.knosys.2018.09.018_b13) 2017; 56 |
| References_xml | – volume: 14 start-page: 64 year: 2017 end-page: 75 ident: b11 article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 20 start-page: 275 year: 2016 end-page: 298 ident: b14 article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables publication-title: IEEE Trans. Evol. Comput. – year: 2011 ident: b4 article-title: Special Issues on Design Optimization of Wind Turbine Structures – volume: 414 start-page: 158 year: 2017 end-page: 174 ident: b26 article-title: Pareto adaptive penalty-based boundary intersection method for multi-objective optimization publication-title: Inf. Sci. – volume: 57 start-page: 429 year: 2008 end-page: 432 ident: b3 article-title: Dynamic multi-objective optimisation for machining gradient materials publication-title: CIRP Ann.-Manuf. Technol. – volume: 1868–1884 year: 2016 ident: b23 article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble publication-title: Neurocomputing – volume: 56 start-page: 1 year: 2017 end-page: 18 ident: b13 article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection publication-title: Appl. Soft Comput. – volume: 1 start-page: 97 year: 2017 end-page: 111 ident: b1 article-title: Evolutionary many-objective optimization of hybrid electric vehicle control: From general optimization to preference articulation publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 6 start-page: 279 year: 2015 end-page: 287 ident: b12 article-title: Enhanced version of multi-algorithm genetically adaptive for multiobjective optimization publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 420 start-page: 364 year: 2017 end-page: 385 ident: b17 article-title: A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm publication-title: Inform. Sci. – start-page: 160 year: 2001 end-page: 165 ident: b6 article-title: Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms publication-title: Proceedings of 2001 IEEE SoutheastCon – volume: 62 start-page: 95 year: 2015 end-page: 111 ident: b19 article-title: A novel hybrid multi-objective immune algorithm with adaptive differential evolution publication-title: Comput. Oper. Res. – volume: 45 year: 2013 ident: b41 article-title: Exploration and exploitation in evolutionary algorithms: A Survey publication-title: ACM Comput. Surv. – volume: 137 start-page: 94 year: 2017 end-page: 103 ident: b2 article-title: Collaborative ontology matching based on compact interactive evolutionary algorithm publication-title: Knowl.-Based Syst. – volume: 348 start-page: 124 year: 2016 end-page: 141 ident: b20 article-title: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization publication-title: Inform. Sci. – volume: 34 start-page: 1 year: 2015 end-page: 17 ident: b16 article-title: State estimation of nonlinear dynamic systems using weighted varlance-based adaptive particle swarm optimization publication-title: Appl. Soft Comput. – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b29 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evol. Comput. – volume: 20 start-page: 275 year: 2016 end-page: 298 ident: b31 article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables publication-title: IEEE Trans. Evol. Comput. – volume: 16 start-page: 35 year: 2012 end-page: 50 ident: b21 article-title: A novel immun clonal algorithm for MO problems publication-title: IEEE Trans. Evol. Comput. – reference: Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multiobjective evolutionary algorithm based on an enhanced inverted generational distance metric, in: Proc. IEEE Congr. Evolutionary Computation, 2016, pp. 5222–5229, 2016. – volume: 19 start-page: 561 year: 2011 end-page: 595 ident: b9 article-title: An adaptive evolutionary multi-objective approach based on simulated annealing publication-title: Evol. Comput. – volume: 3 start-page: 2687 year: 2015 end-page: 2699 ident: b10 article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing publication-title: IEEE Access – volume: 12 start-page: 73 year: 2017 end-page: 87 ident: b40 article-title: PlateEMO: A matlab platform for evolutionary multi-objective optimization publication-title: IEEE Comput. Intell. Mag. – volume: 20 start-page: 821 year: 2016 end-page: 837 ident: b33 article-title: Decomposition based algorithms using Pareto adaptive scalarizing methods publication-title: IEEE Trans. Evol. Comput. – volume: 47 start-page: 2754 year: 2017 end-page: 2767 ident: b18 article-title: An adaptive multiobjective particle swarm optimization based on multiple adaptive methods publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b35 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evol. Comput. – year: 2002 ident: b8 article-title: Evolutionary Algorithms for Solving Multiobjective Problems – year: 2009 ident: b36 article-title: Final report on CEC’09 MOEA competition publication-title: Technical Report – year: 1999 ident: b28 article-title: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: b37 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Trans. Evol. Comput. – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b34 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b15 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 223 start-page: 65 year: 2015 end-page: 81 ident: b7 article-title: Optimizing ontology alignments through a memetic algorithm using both matchfmeasure and unanimous improvement ratio publication-title: Artificial Intelligence – volume: 46 start-page: 421 year: 2016 end-page: 437 ident: b24 article-title: An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts publication-title: IEEE Trans. Cybern. – reference: K. Deb, A. Sinha, S. Kukkonen, Multi-objective test problems, linkages, and evolutionary methodologies, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation-GECCO’06, Seattle, WA, 2006, pp. 1141–1148. – volume: 43 start-page: 445 year: 2013 end-page: 463 ident: b22 article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Trans. Cybern. – volume: 325 start-page: 541 year: 2015 end-page: 557 ident: b30 article-title: A new multi-objective particle swarm optimization algorithm based on decomposition publication-title: Inform. Sci. – volume: 28 start-page: 580 year: 2016 end-page: 591 ident: b5 article-title: Using memetic algorithm for instance coreference resolution publication-title: IEEE Trans. Knowl. Data Eng. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b25 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposi-tion publication-title: IEEE Trans. Evol. Comput. – reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multiobjective optimization test problems, in: Proceedings of IEEE Congress on Evolutionary Computation, 2002, pp. 825–830. – year: 1997 ident: b39 article-title: Principles and Procedures of Statistics: A Biometrical Approach – year: 2002 ident: 10.1016/j.knosys.2018.09.018_b8 – volume: 6 start-page: 279 issue: 12 year: 2015 ident: 10.1016/j.knosys.2018.09.018_b12 article-title: Enhanced version of multi-algorithm genetically adaptive for multiobjective optimization publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 34 start-page: 1 year: 2015 ident: 10.1016/j.knosys.2018.09.018_b16 article-title: State estimation of nonlinear dynamic systems using weighted varlance-based adaptive particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.04.029 – volume: 20 start-page: 821 issue: 6 year: 2016 ident: 10.1016/j.knosys.2018.09.018_b33 article-title: Decomposition based algorithms using Pareto adaptive scalarizing methods publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2521175 – volume: 56 start-page: 1 year: 2017 ident: 10.1016/j.knosys.2018.09.018_b13 article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.056 – volume: 223 start-page: 65 year: 2015 ident: 10.1016/j.knosys.2018.09.018_b7 article-title: Optimizing ontology alignments through a memetic algorithm using both matchfmeasure and unanimous improvement ratio publication-title: Artificial Intelligence doi: 10.1016/j.artint.2015.03.001 – volume: 1868–1884 year: 2016 ident: 10.1016/j.knosys.2018.09.018_b23 article-title: Self-organizing multiobjective optimization based on decomposition with neighborhood ensemble publication-title: Neurocomputing – volume: 420 start-page: 364 year: 2017 ident: 10.1016/j.knosys.2018.09.018_b17 article-title: A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.08.076 – volume: 46 start-page: 421 issue: 2 year: 2016 ident: 10.1016/j.knosys.2018.09.018_b24 article-title: An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2403131 – volume: 57 start-page: 429 issue: 1 year: 2008 ident: 10.1016/j.knosys.2018.09.018_b3 article-title: Dynamic multi-objective optimisation for machining gradient materials publication-title: CIRP Ann.-Manuf. Technol. doi: 10.1016/j.cirp.2008.03.020 – start-page: 160 year: 2001 ident: 10.1016/j.knosys.2018.09.018_b6 article-title: Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms – volume: 348 start-page: 124 year: 2016 ident: 10.1016/j.knosys.2018.09.018_b20 article-title: An adaptive multi-population differential evolution algorithm for continuous multi-objective optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.01.068 – ident: 10.1016/j.knosys.2018.09.018_b38 doi: 10.1145/1143997.1144179 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.knosys.2018.09.018_b34 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 47 start-page: 2754 issue: 9 year: 2017 ident: 10.1016/j.knosys.2018.09.018_b18 article-title: An adaptive multiobjective particle swarm optimization based on multiple adaptive methods publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2692385 – volume: 16 start-page: 35 issue: 1 year: 2012 ident: 10.1016/j.knosys.2018.09.018_b21 article-title: A novel immun clonal algorithm for MO problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2046328 – volume: 14 start-page: 64 issue: 1 year: 2017 ident: 10.1016/j.knosys.2018.09.018_b11 article-title: Multi-objective particle swarm optimization approach for cost-based feature selection in classification publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2015.2476796 – volume: 414 start-page: 158 year: 2017 ident: 10.1016/j.knosys.2018.09.018_b26 article-title: Pareto adaptive penalty-based boundary intersection method for multi-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.05.012 – year: 2011 ident: 10.1016/j.knosys.2018.09.018_b4 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.knosys.2018.09.018_b15 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 43 start-page: 445 issue: 2 year: 2013 ident: 10.1016/j.knosys.2018.09.018_b22 article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2209115 – volume: 20 start-page: 275 issue: 2 year: 2016 ident: 10.1016/j.knosys.2018.09.018_b31 article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2455812 – volume: 3 start-page: 2687 year: 2015 ident: 10.1016/j.knosys.2018.09.018_b10 article-title: A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2508940 – volume: 45 issue: 3 year: 2013 ident: 10.1016/j.knosys.2018.09.018_b41 article-title: Exploration and exploitation in evolutionary algorithms: A Survey publication-title: ACM Comput. Surv. doi: 10.1145/2480741.2480752 – year: 1999 ident: 10.1016/j.knosys.2018.09.018_b28 – volume: 325 start-page: 541 year: 2015 ident: 10.1016/j.knosys.2018.09.018_b30 article-title: A new multi-objective particle swarm optimization algorithm based on decomposition publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.07.018 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 10.1016/j.knosys.2018.09.018_b40 article-title: PlateEMO: A matlab platform for evolutionary multi-objective optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – year: 1997 ident: 10.1016/j.knosys.2018.09.018_b39 – volume: 20 start-page: 275 issue: 2 year: 2016 ident: 10.1016/j.knosys.2018.09.018_b14 article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2455812 – volume: 62 start-page: 95 year: 2015 ident: 10.1016/j.knosys.2018.09.018_b19 article-title: A novel hybrid multi-objective immune algorithm with adaptive differential evolution publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.04.003 – ident: 10.1016/j.knosys.2018.09.018_b32 – volume: 137 start-page: 94 year: 2017 ident: 10.1016/j.knosys.2018.09.018_b2 article-title: Collaborative ontology matching based on compact interactive evolutionary algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.09.017 – volume: 28 start-page: 580 issue: 2 year: 2016 ident: 10.1016/j.knosys.2018.09.018_b5 article-title: Using memetic algorithm for instance coreference resolution publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2475755 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.knosys.2018.09.018_b25 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposi-tion publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – ident: 10.1016/j.knosys.2018.09.018_b27 doi: 10.1109/CEC.2002.1007032 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.knosys.2018.09.018_b29 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evol. Comput. doi: 10.1162/106365600568202 – volume: 19 start-page: 561 issue: 4 year: 2011 ident: 10.1016/j.knosys.2018.09.018_b9 article-title: An adaptive evolutionary multi-objective approach based on simulated annealing publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00038 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.knosys.2018.09.018_b35 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evol. Comput. doi: 10.1162/106365600568202 – volume: 7 start-page: 117 issue: 2 year: 2003 ident: 10.1016/j.knosys.2018.09.018_b37 article-title: Performance assessment of multiobjective optimizers: An analysis and review publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810758 – volume: 1 start-page: 97 issue: 2 year: 2017 ident: 10.1016/j.knosys.2018.09.018_b1 article-title: Evolutionary many-objective optimization of hybrid electric vehicle control: From general optimization to preference articulation publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2017.2669104 – year: 2009 ident: 10.1016/j.knosys.2018.09.018_b36 article-title: Final report on CEC’09 MOEA competition |
| SSID | ssj0002218 |
| Score | 2.2959583 |
| Snippet | The main goal of multi-objective optimization evolutionary algorithms (MOEAs) is to obtain a set of solutions with good diversity and convergence. However, how... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 572 |
| SubjectTerms | Algorithms Convergence Crossovers Decomposition Evolutionary algorithms Experiments Exploitation Genetic algorithms Global local relationship Multi-objective optimization Multi-search strategy Multiple objective analysis Objectives Operators Optimization Search methods Search strategies State of the art Strategies Strategy |
| Title | An improvement decomposition-based multi-objective evolutionary algorithm using multi-search strategy |
| URI | https://dx.doi.org/10.1016/j.knosys.2018.09.018 https://www.proquest.com/docview/2165062640 |
| Volume | 163 |
| WOSCitedRecordID | wos000454468200044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VlAMXoCyipVRzQFyiQV7GyxwjlIolChxSKbfR2J6BpMUOiVv15_fN5jottHDgYlve4sx7fsvnb95D6G1KAyXAbRGVFILQKCtJLjWIo2RAJZUyFKZk_iSbTvP5nH1zUPbGtBPI6jq_vGSr_ypq2AfC1lNn_0Hc3U1hB2yD0GEJYoflXwl-VOupj-vGFAJvh5XUrHFHzSLaaVWWRUiaYmmt3VBeuCfSFDpx9r1ZL9ofP4fnBkewJzt0ZGOL2W59C_7iYTl3902vCLoOkR3pd-qdpMHFF5ZtsuijDnqi0xbq0E2H8RbomoNkscWAZIGrJCutZc0zCOVpwLZMrzNu1ngmtonPLaNu8YXl-9O6gX-g6Xi5qU3rDPdWDe3pV358Mpnw2Xg-e7f6RXR7Mf0Z3vVaeYB2oyxh-QDtjj6N5587px1FBgruntzPsjRUwNs__Kco5oY_N0HK7Cl67LILPLJasYd2ZP0MPfGdO7AbxudIjmrcUxL8GyXBN5QE95UEd0qCjZLgvpJgryQv0MnxePbhI3ENN0gZx7QlimnSr4yZgtEospSWcSgiIVSgaCSVFJD9M11OiUZCqYImuQypUJHKiiqUqoxfokHd1PIVwmkeKZnLSlS0oiytmCpEGCcpuAdIGBTdR7EfQF66avS6KcoZ97TDJbfDzvWw84BxWO0j0l21stVY7jk_87LhLqK0kSIH3brnykMvSu5ebjgeQj6TQgoRHNx9-DV6dP3SHKJBuz6Xb9DD8qJdbNZHTveuALsCpw8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improvement+decomposition-based+multi-objective+evolutionary+algorithm+using+multi-search+strategy&rft.jtitle=Knowledge-based+systems&rft.au=Dong%2C+Ning&rft.au=Dai%2C+Cai&rft.date=2019-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=163&rft.spage=572&rft_id=info:doi/10.1016%2Fj.knosys.2018.09.018&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |