Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study

•The first taxonomy for domain generalization-based fault diagnosis is proposed.•A basic and reproducible code framework is provided.•A broad discussion of critical challenges and future directions is presented. Most data-driven methods for fault diagnostics rely on the assumption of independently a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 245; s. 109964
Hlavní autori: Zhao, Chao, Zio, Enrico, Shen, Weiming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.05.2024
Elsevier
Predmet:
ISSN:0951-8320, 1879-0836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The first taxonomy for domain generalization-based fault diagnosis is proposed.•A basic and reproducible code framework is provided.•A broad discussion of critical challenges and future directions is presented. Most data-driven methods for fault diagnostics rely on the assumption of independently and identically distributed data of training and testing. However, domain shift between the phases of training and testing is common in practice. Recently, domain generalization-based fault diagnosis (DGFD) has gained widespread attention for learning fault diagnosis knowledge from multiple source domains and applying it to unseen target domains. This paper summarizes the developments in DGFD from an application-oriented perspective. Firstly, basic definitions of DGFD and its variant applications are formulated. Then, motivations, goals, challenges and state-of-the-art solutions for different applications are discussed. The limitations of existing technologies are highlighted. A comprehensive benchmark study is carried out on eight open-source and two self-collected datasets to provide an understanding of the existing methods and a unified framework for researchers. Finally, several future directions are given. Our code is available at https://github.com/CHAOZHAO-1/DG-PHM.
AbstractList •The first taxonomy for domain generalization-based fault diagnosis is proposed.•A basic and reproducible code framework is provided.•A broad discussion of critical challenges and future directions is presented. Most data-driven methods for fault diagnostics rely on the assumption of independently and identically distributed data of training and testing. However, domain shift between the phases of training and testing is common in practice. Recently, domain generalization-based fault diagnosis (DGFD) has gained widespread attention for learning fault diagnosis knowledge from multiple source domains and applying it to unseen target domains. This paper summarizes the developments in DGFD from an application-oriented perspective. Firstly, basic definitions of DGFD and its variant applications are formulated. Then, motivations, goals, challenges and state-of-the-art solutions for different applications are discussed. The limitations of existing technologies are highlighted. A comprehensive benchmark study is carried out on eight open-source and two self-collected datasets to provide an understanding of the existing methods and a unified framework for researchers. Finally, several future directions are given. Our code is available at https://github.com/CHAOZHAO-1/DG-PHM.
Most data-driven methods for fault diagnostics rely on the assumption of independently and identically distributed data of training and testing. However, domain shift between the phases of training and testing is common in practice. Recently, domain generalization-based fault diagnosis (DGFD) has gained widespread attention for learning fault diagnosis knowledge from multiple source domains and applying it to unseen target domains. This paper summarizes the developments in DGFD from an application-oriented perspective. Firstly, basic definitions of DGFD and its variant applications are formulated. Then, motivations, goals, challenges and state-of-the-art solutions for different applications are discussed. The limitations of existing technologies are highlighted. A comprehensive benchmark study is carried out on eight open-source and two self-collected datasets to provide an understanding of the existing methods and a unified framework for researchers. Finally, several future directions are given. Our code is available at https://github.com/CHAOZHAO-1/DG-PHM.
ArticleNumber 109964
Author Shen, Weiming
Zhao, Chao
Zio, Enrico
Author_xml – sequence: 1
  givenname: Chao
  surname: Zhao
  fullname: Zhao, Chao
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
– sequence: 2
  givenname: Enrico
  surname: Zio
  fullname: Zio, Enrico
  organization: MINES Paris PSL University, CRC, Sophia Antipolis, France
– sequence: 3
  givenname: Weiming
  surname: Shen
  fullname: Shen, Weiming
  email: shenwm@hust.edu.cn
  organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
BackLink https://hal.science/hal-04835827$$DView record in HAL
BookMark eNp9kEtP3DAURq2KSh1o_0BX3rLI1M_EQWxGlBakkbpp19aNfQOeBju1w0jw68lMyoYFK0uf77mPc0pOYopIyFfO1pzx-ttunbGUtWBCzUHb1uoDWXHTtBUzsj4hK9ZqXhkp2CdyWsqOMaZa3azIv-_pAUKkdxgxwxCeYQop0j5l6nIqpfLLfw-Pw0R9gLuYSigXdBMpjOMQ3BGoUg4YJ_R0xFxGdFPYI4XoKdAOo7t_gPyXlunRP30mH3sYCn75_56RPz-uf1_dVNtfP2-vNtvKSammqhdcKNPVUiuuAbTuUDnpZa3brhNtw5meA97U2NSmBzA1CkTj0SmJvXbyjJwvfe9hsGMO8wZPNkGwN5utPWRMGamNaPZ8rjVL7fHmjL11YToeNmUIg-XMHjTbnT1otgfNdtE8o-IN-jrrXehygXAWsA-YbXGzP4c-5Nmd9Sm8h78Arbya7g
CitedBy_id crossref_primary_10_1109_TIM_2025_3569920
crossref_primary_10_1016_j_eswa_2024_124944
crossref_primary_10_1007_s12206_025_0802_4
crossref_primary_10_1016_j_aei_2024_102912
crossref_primary_10_1016_j_aei_2024_102878
crossref_primary_10_3390_pr13041167
crossref_primary_10_1016_j_aei_2024_102756
crossref_primary_10_2118_223588_PA
crossref_primary_10_1016_j_aei_2024_102875
crossref_primary_10_1177_14759217251362178
crossref_primary_10_1016_j_ress_2024_110409
crossref_primary_10_3390_machines13070563
crossref_primary_10_1177_14759217251345714
crossref_primary_10_1016_j_psep_2025_107554
crossref_primary_10_1016_j_asoc_2025_113941
crossref_primary_10_1016_j_engappai_2025_112241
crossref_primary_10_1016_j_knosys_2025_114109
crossref_primary_10_3390_app142411910
crossref_primary_10_1016_j_ress_2024_110643
crossref_primary_10_1109_TIM_2025_3597686
crossref_primary_10_1016_j_ress_2024_110767
crossref_primary_10_1088_1361_6501_ad8d71
crossref_primary_10_1016_j_ress_2024_110492
crossref_primary_10_1177_14759217251332517
crossref_primary_10_3390_lubricants13080350
crossref_primary_10_1177_14759217251366708
crossref_primary_10_1109_TIM_2025_3573336
crossref_primary_10_1016_j_ymssp_2024_111924
crossref_primary_10_1016_j_knosys_2025_113882
crossref_primary_10_1109_JSEN_2024_3458409
crossref_primary_10_1016_j_rineng_2025_106165
crossref_primary_10_1177_14759217251366940
crossref_primary_10_1371_journal_pone_0314898
crossref_primary_10_1016_j_eswa_2025_128115
crossref_primary_10_1139_tcsme_2024_0167
crossref_primary_10_1016_j_ress_2024_110539
crossref_primary_10_3390_pr13010151
crossref_primary_10_1088_1361_6501_adce1f
crossref_primary_10_3390_pr12050882
crossref_primary_10_1016_j_eswa_2025_129218
crossref_primary_10_1016_j_ress_2024_110188
crossref_primary_10_1080_10589759_2025_2517694
crossref_primary_10_1016_j_inffus_2025_103742
crossref_primary_10_1016_j_measurement_2024_116344
crossref_primary_10_1177_14759217251358533
crossref_primary_10_1038_s41598_025_12370_3
crossref_primary_10_1016_j_inffus_2025_103340
crossref_primary_10_1016_j_engappai_2025_110760
crossref_primary_10_1109_TIM_2025_3553961
crossref_primary_10_1016_j_knosys_2024_112787
crossref_primary_10_1088_1361_6501_ada6eb
crossref_primary_10_1016_j_ress_2024_110745
crossref_primary_10_1109_JSEN_2024_3502714
crossref_primary_10_1109_TSTE_2024_3468151
crossref_primary_10_3390_machines13090807
crossref_primary_10_3390_s25113482
crossref_primary_10_1109_TIM_2025_3603655
crossref_primary_10_1016_j_neunet_2024_106482
crossref_primary_10_1016_j_ress_2024_110597
crossref_primary_10_1080_10589759_2024_2413696
crossref_primary_10_1109_TIM_2025_3552003
crossref_primary_10_1088_1361_6501_ae02ba
crossref_primary_10_1007_s11760_025_04325_y
crossref_primary_10_1109_TIM_2025_3552002
crossref_primary_10_1109_TIM_2025_3582302
crossref_primary_10_3390_machines12110787
crossref_primary_10_1016_j_ress_2025_110898
crossref_primary_10_1177_09544062241266349
crossref_primary_10_1016_j_eswa_2025_129742
crossref_primary_10_1109_TIM_2025_3565707
crossref_primary_10_1088_1361_6501_adafd0
crossref_primary_10_3390_app15137260
crossref_primary_10_1016_j_ymssp_2025_112773
crossref_primary_10_1080_23335777_2025_2508146
crossref_primary_10_1016_j_ymssp_2025_112770
crossref_primary_10_1016_j_ymssp_2025_113343
crossref_primary_10_1016_j_ress_2024_110638
crossref_primary_10_1177_10775463241280426
crossref_primary_10_3390_machines13060445
crossref_primary_10_1016_j_knosys_2024_112915
crossref_primary_10_1016_j_ress_2024_110284
crossref_primary_10_1038_s41598_025_17177_w
crossref_primary_10_1177_14759217251331239
crossref_primary_10_1016_j_engappai_2025_111916
crossref_primary_10_3390_machines13040278
crossref_primary_10_1155_vib_8680245
crossref_primary_10_1177_01423312251369906
crossref_primary_10_1016_j_engappai_2025_111355
crossref_primary_10_1109_ACCESS_2025_3573320
crossref_primary_10_1016_j_aei_2025_103779
crossref_primary_10_1109_TIM_2025_3554870
crossref_primary_10_1016_j_measurement_2025_118236
crossref_primary_10_1016_j_ymssp_2025_112422
crossref_primary_10_3390_machines12090608
crossref_primary_10_1109_TASE_2025_3571516
crossref_primary_10_1080_10589759_2024_2412184
crossref_primary_10_1109_JIOT_2025_3549728
crossref_primary_10_1088_1361_6501_adcadc
crossref_primary_10_3390_s25092818
crossref_primary_10_1109_JIOT_2025_3583081
crossref_primary_10_1016_j_measurement_2025_117544
crossref_primary_10_1016_j_ress_2024_110454
crossref_primary_10_1109_TIM_2025_3599279
crossref_primary_10_1007_s42417_025_01912_8
crossref_primary_10_1007_s11071_025_10914_w
crossref_primary_10_1088_1361_6501_adc324
crossref_primary_10_1016_j_energy_2025_137189
crossref_primary_10_1016_j_ymssp_2025_112797
crossref_primary_10_1109_TIM_2025_3595630
crossref_primary_10_1016_j_ress_2025_111528
crossref_primary_10_3390_pr13071970
crossref_primary_10_1016_j_ress_2024_110381
crossref_primary_10_1177_14759217251327357
crossref_primary_10_1109_TASE_2025_3589234
crossref_primary_10_1109_JSEN_2024_3507817
crossref_primary_10_3390_s24144682
crossref_primary_10_1093_jcde_qwaf080
crossref_primary_10_1016_j_aei_2024_103079
crossref_primary_10_1109_JSEN_2025_3579922
crossref_primary_10_1088_1361_6501_addf63
crossref_primary_10_1016_j_aei_2025_103632
crossref_primary_10_1109_JSEN_2024_3461810
crossref_primary_10_1088_1361_6501_ae0494
crossref_primary_10_3390_pr12091902
crossref_primary_10_1016_j_engappai_2024_109584
crossref_primary_10_1109_TIM_2024_3428618
crossref_primary_10_1016_j_knosys_2025_114446
crossref_primary_10_1088_1361_6501_add040
crossref_primary_10_1016_j_ymssp_2025_112965
crossref_primary_10_1088_2631_8695_adfe38
crossref_primary_10_1109_TIM_2025_3580850
crossref_primary_10_3390_s25102978
crossref_primary_10_1016_j_engappai_2025_111538
crossref_primary_10_1109_TTE_2024_3525077
crossref_primary_10_1007_s10010_025_00875_2
crossref_primary_10_1016_j_knosys_2025_114044
crossref_primary_10_1088_1361_6501_ad99f0
crossref_primary_10_1016_j_compind_2024_104169
crossref_primary_10_1109_JIOT_2024_3489617
crossref_primary_10_1016_j_aei_2024_103063
crossref_primary_10_3390_math12182865
crossref_primary_10_1109_TIM_2025_3551907
crossref_primary_10_1109_JSEN_2024_3483278
crossref_primary_10_1109_TIM_2025_3565350
crossref_primary_10_1109_JIOT_2025_3573752
crossref_primary_10_1016_j_aei_2025_103646
crossref_primary_10_1109_TIM_2025_3556913
crossref_primary_10_3390_lubricants13030116
crossref_primary_10_1016_j_aei_2024_102787
crossref_primary_10_1016_j_aei_2025_103769
crossref_primary_10_1109_TIM_2025_3597670
crossref_primary_10_1016_j_engappai_2025_111660
crossref_primary_10_3390_machines13050347
crossref_primary_10_1016_j_ress_2025_110854
crossref_primary_10_1016_j_ymssp_2025_112458
crossref_primary_10_1016_j_ymssp_2025_113304
crossref_primary_10_1007_s11071_025_11450_3
crossref_primary_10_1016_j_eswa_2025_128056
crossref_primary_10_1016_j_ress_2024_110439
crossref_primary_10_1088_1361_6501_add953
crossref_primary_10_3390_sym17091494
crossref_primary_10_1016_j_engappai_2025_110216
crossref_primary_10_1109_TIM_2025_3545516
Cites_doi 10.1016/j.jmsy.2022.12.001
10.1016/j.isatra.2022.03.014
10.1049/cim2.12047
10.1016/j.ymssp.2023.110139
10.1016/j.ymssp.2022.108990
10.1109/TII.2018.2864759
10.1016/j.measurement.2020.108516
10.1109/TITS.2022.3203871
10.1177/1475921720980718
10.1016/j.ymssp.2022.110011
10.1016/j.knosys.2020.106236
10.1016/j.neucom.2020.05.040
10.1109/TIM.2020.3016068
10.1016/j.ymssp.2023.110579
10.1109/TIE.2019.2953010
10.1109/TIM.2022.3216413
10.1016/j.measurement.2021.109650
10.1109/TIM.2022.3154000
10.1016/j.rcim.2023.102668
10.1016/j.neucom.2020.05.014
10.1016/j.knosys.2022.109880
10.1016/j.compind.2021.103399
10.1016/j.asoc.2022.109164
10.1109/TIM.2022.3177138
10.1371/journal.pone.0164111
10.1016/j.ymssp.2021.108036
10.1016/j.engappai.2023.107765
10.1109/ACCESS.2020.2994310
10.1109/TAI.2021.3054609
10.1088/1361-6501/acc04a
10.1109/ACCESS.2019.2939876
10.1016/j.ress.2023.109380
10.1088/1361-6501/ace841
10.1109/TIE.2021.3095804
10.1016/j.ress.2022.108672
10.1016/j.compind.2022.103810
10.1109/JSEN.2019.2949057
10.3901/JME.2013.01.063
10.1109/TII.2022.3175018
10.1016/j.ymssp.2023.110228
10.1016/j.measurement.2019.02.073
10.1109/TII.2023.3256400
10.1016/j.ymssp.2022.110074
10.1016/j.ymssp.2015.10.025
10.1109/ACCESS.2018.2878491
10.1016/j.ress.2023.109528
10.1109/TII.2019.2934901
10.1016/j.neucom.2020.04.045
10.1155/2022/3024590
10.1109/72.788640
10.1016/j.jsv.2005.03.007
10.1088/1361-6501/ac100e
10.1109/TASE.2020.2969485
10.1016/j.ress.2022.108358
10.3390/s130608013
10.1007/978-3-031-20044-1_4
10.1109/TIM.2020.2995441
10.1016/j.ymssp.2021.108487
10.1016/j.ymssp.2019.106587
10.1016/j.eswa.2021.116197
10.1109/TIE.2019.2898619
10.1109/TSMC.2017.2754287
10.1016/j.isatra.2019.08.012
10.1016/j.ress.2022.108883
10.1016/j.ymssp.2015.04.021
10.1016/j.isatra.2019.08.040
10.1109/TIE.2019.2942548
10.1016/j.ress.2023.109188
10.1016/j.ress.2021.108119
ContentType Journal Article
Copyright 2024
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.ress.2024.109964
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID oai:HAL:hal-04835827v1
10_1016_j_ress_2024_109964
S0951832024000395
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
ID FETCH-LOGICAL-c334t-f21248b635415aa55be4c3d3659bb297105e4c176e768faa86e2ee8dec43ef5c3
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001177891000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Tue Oct 14 20:36:41 EDT 2025
Sat Nov 29 07:06:27 EST 2025
Tue Nov 18 22:30:57 EST 2025
Sat Apr 13 16:38:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Domain shift
Deep learning
Domain generalization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c334t-f21248b635415aa55be4c3d3659bb297105e4c176e768faa86e2ee8dec43ef5c3
ORCID 0000-0002-1749-7223
0000-0002-7108-637X
ParticipantIDs hal_primary_oai_HAL_hal_04835827v1
crossref_citationtrail_10_1016_j_ress_2024_109964
crossref_primary_10_1016_j_ress_2024_109964
elsevier_sciencedirect_doi_10_1016_j_ress_2024_109964
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yang, Yin, Zheng, Li, Xu, Chen (bib0064) 2020; 8
Li, Huang, Li, Liao, Chen, He (bib0040) 2022; 167
Wang, Luo, Qiu, Huang, Baktashmotlagh (bib0093) 2021
Zhao, Liu, Shen (bib0008) 2022
Wang, Huang, Wang, Shen, Zhu (bib0017) 2022; 71
Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T. Deep Domain Confusion: Maximizing for Domain Invariance 2014.
Uk, Ha, Kim, Bae, Lee, Youn (bib0041) 2021; 125
Ben-David, Blitzer, Crammer, Pereira (bib0061) 2007
Niu, Liu, Wang, Song (bib0015) 2021; 1
Ren, Wang, Zhu, Shi, Huang (bib0085) 2023; 200
Zhao, Liu, Shen, Gao (bib0027) 2021; 182
Liao, Huang, Li, Chen, Li (bib0083) 2020; 69
Xiong, Tang, Deng, Zhao, Yu (bib0020) 2021; 169
Yang, Zheng, Ge (bib0110) 2022
Cheng, Zhou, Ma, Wu, Yuan (bib0025) 2020; 409
Zheng, Wang, Yang, Li, Xu (bib0035) 2020; 67
Zhou, Lei, Zio, Wen, Liu, Su (bib0011) 2023; 191
Wang, Lei, Naipeng (bib0100) 2016; 6
Liu, Cao, Luo (bib0073) 2023; 237
Zhou, Wang, Zio, Wen, Liu, Su (bib0003) 2023; 239
Sun, Saenko (bib0105) 2016; 9915 LNCS
Yang, Member, Lei, Member, Xu, Lee (bib0106) 2022; 69
Li, Gao, Cao, Huang, Weng, Mi (bib0091) 2021
He, Chen, Zhou, Huang (bib0006) 2023; 66
Zhao, Shen (bib0080) 2023
Lu, Wang, Ragulskis, Cheng (bib0099) 2016; 11
Vapnik (bib0103) 1999; 10
Xu, Zhou, Zhao, Fan, Ding, Yuan (bib0046) 2022; 190
.
Zhang, Cisse, Dauphin, Lopez-Paz (bib0057) 2018
Li, Zhang, Qin, Estupinan (bib0038) 2020; 407
Li, Zhao, Sun, Yan, Chen (bib0030) 2021; 70
Cong, Song, Li, Jia (bib0081) 2023
Peng, Qiao, Zhao (bib0092) 2022; 14
Chen, He, Li, Liao, Gryllias, Li (bib0034) 2020; 69
Dong, Su, Gao, Wu, Jiang, Chen (bib0076) 2023
Zhao, Zhang, Yu, Sun, Wang, Yan (bib0039) 2021; 70
Zhao, Shen (bib0094) 2022; 19
He, Shen (bib0014) 2023
Zheng, Yang, Yin, Li, Wang, Xu (bib0070) 2021; 70
Ma, Zhang, Fan, Wang (bib0019) 2020; 99
Qin, Qian, Luo, Pu (bib0023) 2022
Zhao, Shen (bib0078) 2024; 130
Shi, Deng, Deng, Li, Xu, Zhang (bib0068) 2022
Li, Wang, Zi, Zhang, Wan (bib0077) 2021
Ren, Mo, Cheng (bib0066) 2023
Smith, Randall (bib0097) 2015; 64–65
Zhao, Shen (bib0084) 2023; 189
Li, Zhang, Ma, Luo, Li (bib0055) 2020; 403
Jia, Lei, Lin, Zhou, Lu (bib0005) 2016; 72–73
Wen, Gao, Li (bib0026) 2019; 49
Deng, Huang, Du, Li, Zhao, Lv (bib0031) 2021; 127
Zhao, Shen (bib0087) 2022; 226
Qiu, Lee, Lin, Yu (bib0095) 2006; 289
Lei, Yang, Jiang, Jia, Li, Nandi (bib0004) 2020; 138
Maniyar U, Joseph KJ. Zero Shot Domain Generalization n.d.
Zheng, Wang, Yang, Yin, Li, Li (bib0013) 2019; 7
Zhao, Shen (bib0009) 2022; 221
Yan, Su, Huang, Mo (bib0032) 2020
Shi, Chen, Zhang, Zi, Li, Chen (bib0069) 2023; 188
Han, Li, Qian (bib0056) 2021; 70
Xu Y, Feng K, Yan X, Sheng X, Sun B. Cross-modal Fusion Convolutional Neural Networks with Online Soft Label Training Strategy for Mechanical Fault Diagnosis 2023.
Liu, Shen, Gao, Kusiak (bib0050) 2022
Wang, Huang, Shi, Wang, Shen, Zhu (bib0079) 2022; 256
Chen, Li, Shen, Zhu, Wang, Xia (bib0062) 2021; 3203
Guo, Zhang, Yang, Lyu, Gao (bib0042) 2020; 67
Yu, Fu, Ma, Lin, Li (bib0028) 2021; 20
Shao, McAleer, Yan, Baldi (bib0048) 2019; 15
Li, Ping, Wang, Chen, Cao (bib0096) 2013; 13
Guo, Li, Song, Wang, Chen (bib0033) 2020; 16
Zha D, States U. Data-centric Artificial Intelligence: A Survey 2023;1.
Yang, Lei, Jia, Li, Du (bib0022) 2020; 67
Zhao, Liu, Shen (bib0049) 2021; 32
Yang Y, Wang H, Katabi D. On multi-domain long-tailed recognition, Imbalanced Domain Generalization and Beyond 2022:57–75.
Zhang, Zhao, Zhang, Liu, Sun, Li (bib0063) 2021; 70
Zio (bib0002) 2022; 218
Li, Wang, Zi, Zhang (bib0036) 2021
Lessmeier, Kimotho, Zimmer, Sextro (bib0098) 2016; 2016
Ren Y, Liu J, Wang Q, Zhang H. HSELL-Net : A Heterogeneous Sample Enhancement Network With Lifelong Learning Under Industrial Small Samples 2022:1–13.
Jiao, Lin, Zhao, Liang (bib0029) 2020; 205
Chen, Shen, Wang, Kong, Chen, Zhu (bib0045) 2022; 71
Qian, Li, Yi, Zhang (bib0001) 2019; 138
Yang, Kong, Wang, Li, Cheng, Yu (bib0018) 2021; 186
Fan, Xu, Jiang, Ding (bib0058) 2023; 1
Xing, Lei, Wang, Lu, Li (bib0047) 2022; 162
Xu, Baraldi, Lu, Zio (bib0010) 2022; 23
Jia, Li, Wang, Sun, Deng (bib0072) 2023; 192
Chen B, Shen C, Member S, Wang D, Kong L, Chen L, et al. A Lifelong Learning Method for Gearbox Diagnosis With Incremental Fault Types 2022;71.
Zhao, Shen (bib0054) 2022; 173
Wang, He, Chen, Lai (bib0012) 2013; 49
Li, Shen, Kong, Wang, Xia, Zhu (bib0086) 2022; 71
Yan, Shen, Sun, Chen (bib0037) 2020; 20
Li, Wang, Member, Zi, Zhang, Li (bib0071) 2022; 3203
Han, Liu, Yang, Jiang (bib0021) 2020; 97
Li, Pan, Wang, Kot (bib0104) 2018
Ragab, Chen, Zhang, Eldele, Wu, Kwoh (bib0065) 2022; 71
Wang, Wen, Li, Gao (bib0074) 2023
Qian, Zhou, Qin (bib0075) 2023
Zhang, Chen, Zio (bib0051) 2022; 126
Zhang, Li, Li, Ng (bib0101) 2018; 6
Wang, Bai, Wang, Tan, Liu (bib0067) 2022; 71
He, Zhao, Zhou, Shen (bib0016) 2024; 86
Tang, Liu, Sun, Bo (bib0053) 2022; 71
Song, Liu (bib0082) 2023
Kaddour J, Lynch A, Liu Q, Kusner MJ, Silva R. Causal Machine Learning: A Survey and Open Problems 2022.
He, Xiang, Zhou, Chen (bib0007) 2023; 145
Zhao, Shen (bib0109) 2023
Chen, Zhang, Wang, Zio, Dui, Zhang (bib0052) 2023; 230
Yao H, Yang X, Zhou A, Finn C. Multi-Domain Long-Tailed Learning by Augmenting Disentangled Representations 2022:1–22.
Yang, Zhou, Liu (bib0102) 2021
Shi, Deng, Deng, Xu, Liu, Ding (bib0059) 2023; 235
He, Li, Li, Zhang, Zhang, Zhou (bib0060) 2022; 2022
Zhao, Shen (bib0088) 2023; 1
Han (10.1016/j.ress.2024.109964_bib0021) 2020; 97
Zhao (10.1016/j.ress.2024.109964_bib0054) 2022; 173
Smith (10.1016/j.ress.2024.109964_bib0097) 2015; 64–65
10.1016/j.ress.2024.109964_bib0112
10.1016/j.ress.2024.109964_bib0111
Zhang (10.1016/j.ress.2024.109964_bib0101) 2018; 6
He (10.1016/j.ress.2024.109964_bib0060) 2022; 2022
Ben-David (10.1016/j.ress.2024.109964_bib0061) 2007
Vapnik (10.1016/j.ress.2024.109964_bib0103) 1999; 10
Ma (10.1016/j.ress.2024.109964_bib0019) 2020; 99
Qian (10.1016/j.ress.2024.109964_bib0001) 2019; 138
Li (10.1016/j.ress.2024.109964_bib0086) 2022; 71
Chen (10.1016/j.ress.2024.109964_bib0034) 2020; 69
Ren (10.1016/j.ress.2024.109964_bib0066) 2023
10.1016/j.ress.2024.109964_bib0089
Wen (10.1016/j.ress.2024.109964_bib0026) 2019; 49
He (10.1016/j.ress.2024.109964_bib0014) 2023
Yang (10.1016/j.ress.2024.109964_bib0110) 2022
Wang (10.1016/j.ress.2024.109964_bib0093) 2021
Liu (10.1016/j.ress.2024.109964_bib0073) 2023; 237
Wang (10.1016/j.ress.2024.109964_bib0100) 2016; 6
Yu (10.1016/j.ress.2024.109964_bib0028) 2021; 20
Fan (10.1016/j.ress.2024.109964_bib0058) 2023; 1
Wang (10.1016/j.ress.2024.109964_bib0012) 2013; 49
Song (10.1016/j.ress.2024.109964_bib0082) 2023
Deng (10.1016/j.ress.2024.109964_bib0031) 2021; 127
Li (10.1016/j.ress.2024.109964_bib0071) 2022; 3203
Guo (10.1016/j.ress.2024.109964_bib0042) 2020; 67
Dong (10.1016/j.ress.2024.109964_bib0076) 2023
Qiu (10.1016/j.ress.2024.109964_bib0095) 2006; 289
Shi (10.1016/j.ress.2024.109964_bib0068) 2022
Zhao (10.1016/j.ress.2024.109964_bib0087) 2022; 226
Chen (10.1016/j.ress.2024.109964_bib0062) 2021; 3203
Yang (10.1016/j.ress.2024.109964_bib0064) 2020; 8
Wang (10.1016/j.ress.2024.109964_bib0017) 2022; 71
Zio (10.1016/j.ress.2024.109964_bib0002) 2022; 218
Jiao (10.1016/j.ress.2024.109964_bib0029) 2020; 205
Guo (10.1016/j.ress.2024.109964_bib0033) 2020; 16
Zhao (10.1016/j.ress.2024.109964_bib0049) 2021; 32
Shi (10.1016/j.ress.2024.109964_bib0069) 2023; 188
Xu (10.1016/j.ress.2024.109964_bib0010) 2022; 23
Shi (10.1016/j.ress.2024.109964_bib0059) 2023; 235
Lessmeier (10.1016/j.ress.2024.109964_bib0098) 2016; 2016
Zhao (10.1016/j.ress.2024.109964_bib0084) 2023; 189
Uk (10.1016/j.ress.2024.109964_bib0041) 2021; 125
Zhao (10.1016/j.ress.2024.109964_bib0078) 2024; 130
10.1016/j.ress.2024.109964_bib0108
10.1016/j.ress.2024.109964_bib0107
Zheng (10.1016/j.ress.2024.109964_bib0013) 2019; 7
Cheng (10.1016/j.ress.2024.109964_bib0025) 2020; 409
Zheng (10.1016/j.ress.2024.109964_bib0035) 2020; 67
Wang (10.1016/j.ress.2024.109964_bib0079) 2022; 256
Han (10.1016/j.ress.2024.109964_bib0056) 2021; 70
Zhao (10.1016/j.ress.2024.109964_bib0088) 2023; 1
He (10.1016/j.ress.2024.109964_bib0007) 2023; 145
Zhao (10.1016/j.ress.2024.109964_bib0080) 2023
Li (10.1016/j.ress.2024.109964_bib0091) 2021
Zhao (10.1016/j.ress.2024.109964_bib0009) 2022; 221
Zheng (10.1016/j.ress.2024.109964_bib0070) 2021; 70
Yang (10.1016/j.ress.2024.109964_bib0106) 2022; 69
Li (10.1016/j.ress.2024.109964_bib0038) 2020; 407
Zhao (10.1016/j.ress.2024.109964_bib0008) 2022
Lu (10.1016/j.ress.2024.109964_bib0099) 2016; 11
Zhang (10.1016/j.ress.2024.109964_bib0063) 2021; 70
10.1016/j.ress.2024.109964_bib0043
Yang (10.1016/j.ress.2024.109964_bib0102) 2021
Li (10.1016/j.ress.2024.109964_bib0055) 2020; 403
Li (10.1016/j.ress.2024.109964_bib0096) 2013; 13
Jia (10.1016/j.ress.2024.109964_bib0005) 2016; 72–73
Chen (10.1016/j.ress.2024.109964_bib0045) 2022; 71
10.1016/j.ress.2024.109964_bib0044
Cong (10.1016/j.ress.2024.109964_bib0081) 2023
Li (10.1016/j.ress.2024.109964_bib0104) 2018
Lei (10.1016/j.ress.2024.109964_bib0004) 2020; 138
Li (10.1016/j.ress.2024.109964_bib0036) 2021
Yang (10.1016/j.ress.2024.109964_bib0022) 2020; 67
Shao (10.1016/j.ress.2024.109964_bib0048) 2019; 15
Liao (10.1016/j.ress.2024.109964_bib0083) 2020; 69
Qian (10.1016/j.ress.2024.109964_bib0075) 2023
Jia (10.1016/j.ress.2024.109964_bib0072) 2023; 192
Sun (10.1016/j.ress.2024.109964_bib0105) 2016; 9915 LNCS
Qin (10.1016/j.ress.2024.109964_bib0023) 2022
He (10.1016/j.ress.2024.109964_bib0016) 2024; 86
Zhang (10.1016/j.ress.2024.109964_bib0057) 2018
Zhao (10.1016/j.ress.2024.109964_bib0027) 2021; 182
Wang (10.1016/j.ress.2024.109964_bib0074) 2023
10.1016/j.ress.2024.109964_bib0090
Liu (10.1016/j.ress.2024.109964_bib0050) 2022
Xu (10.1016/j.ress.2024.109964_bib0046) 2022; 190
Zhang (10.1016/j.ress.2024.109964_bib0051) 2022; 126
Xiong (10.1016/j.ress.2024.109964_bib0020) 2021; 169
Li (10.1016/j.ress.2024.109964_bib0077) 2021
Ragab (10.1016/j.ress.2024.109964_bib0065) 2022; 71
Zhao (10.1016/j.ress.2024.109964_bib0039) 2021; 70
Chen (10.1016/j.ress.2024.109964_bib0052) 2023; 230
Ren (10.1016/j.ress.2024.109964_bib0085) 2023; 200
Zhou (10.1016/j.ress.2024.109964_bib0011) 2023; 191
Peng (10.1016/j.ress.2024.109964_bib0092) 2022; 14
Zhao (10.1016/j.ress.2024.109964_bib0094) 2022; 19
Li (10.1016/j.ress.2024.109964_bib0030) 2021; 70
He (10.1016/j.ress.2024.109964_bib0006) 2023; 66
10.1016/j.ress.2024.109964_bib0024
Wang (10.1016/j.ress.2024.109964_bib0067) 2022; 71
Zhou (10.1016/j.ress.2024.109964_bib0003) 2023; 239
Tang (10.1016/j.ress.2024.109964_bib0053) 2022; 71
Zhao (10.1016/j.ress.2024.109964_bib0109) 2023
Li (10.1016/j.ress.2024.109964_bib0040) 2022; 167
Niu (10.1016/j.ress.2024.109964_bib0015) 2021; 1
Yan (10.1016/j.ress.2024.109964_bib0032) 2020
Yan (10.1016/j.ress.2024.109964_bib0037) 2020; 20
Yang (10.1016/j.ress.2024.109964_bib0018) 2021; 186
Xing (10.1016/j.ress.2024.109964_bib0047) 2022; 162
References_xml – volume: 20
  start-page: 2182
  year: 2021
  end-page: 2198
  ident: bib0028
  article-title: Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis
  publication-title: Struct Heal Monit
– volume: 205
  year: 2020
  ident: bib0029
  article-title: Double-level adversarial domain adaptation network for intelligent fault diagnosis
  publication-title: Knowledge-Based Syst
– year: 2023
  ident: bib0082
  article-title: Federated domain generalization for intelligent fault diagnosis based on pseudo-siamese network and robust global model aggregation
  publication-title: Int J Mach Learn Cybern
– year: 2022
  ident: bib0008
  article-title: A balanced and weighted alignment network for partial transfer fault diagnosis
  publication-title: ISA Trans
– volume: 138
  start-page: 514
  year: 2019
  end-page: 525
  ident: bib0001
  article-title: A novel transfer learning method for robust fault diagnosis of rotating machines under variable working conditions
  publication-title: Meas J Int Meas Confed
– volume: 256
  year: 2022
  ident: bib0079
  article-title: Federated adversarial domain generalization network: a novel machinery fault diagnosis method with data privacy
  publication-title: Knowledge-Based Syst
– start-page: 1
  year: 2023
  end-page: 11
  ident: bib0014
  article-title: MSiT: a cross-machine fault diagnosis model for machine-level CNC spindle motors
  publication-title: IEEE Trans Reliab
– volume: 7
  start-page: 129260
  year: 2019
  end-page: 129290
  ident: bib0013
  article-title: Cross-Domain fault diagnosis using knowledge transfer strategy: a review
  publication-title: IEEE Access
– start-page: 0046
  year: 2021
  ident: bib0102
  article-title: SuperGraph: spatial-temporal graph-based feature extraction for rotating machinery diagnosis
  publication-title: IEEE Trans Ind Electron
– volume: 70
  start-page: 1
  year: 2021
  end-page: 28
  ident: bib0039
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study
  publication-title: IEEE Trans Instrum Meas
– volume: 3203
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib0071
  article-title: Causal consistency network : a collaborative multi-machine generalization method for bearing fault diagnosis
  publication-title: IEEE Trans Ind Informatics
– start-page: 5400
  year: 2018
  end-page: 5409
  ident: bib0104
  article-title: Domain generalization with adversarial feature learning
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– volume: 97
  start-page: 269
  year: 2020
  end-page: 281
  ident: bib0021
  article-title: Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans
– volume: 221
  year: 2022
  ident: bib0009
  article-title: Dual adversarial network for cross-domain open set fault diagnosis
  publication-title: Reliab Eng Syst Saf
– volume: 20
  start-page: 8374
  year: 2020
  end-page: 8393
  ident: bib0037
  article-title: Knowledge transfer for rotary machine fault diagnosis
  publication-title: IEEE Sens J
– start-page: 1
  year: 2023
  end-page: 11
  ident: bib0066
  article-title: Meta-Learning based domain generalization framework for fault diagnosis with gradient aligning and semantic matching
  publication-title: IEEE Trans Ind Info
– reference: Xu Y, Feng K, Yan X, Sheng X, Sun B. Cross-modal Fusion Convolutional Neural Networks with Online Soft Label Training Strategy for Mechanical Fault Diagnosis 2023.
– volume: 1
  start-page: 1
  year: 2023
  end-page: 20
  ident: bib0088
  article-title: Imbalanced domain generalization via semantic-discriminative augmentation for intelligent fault diagnosis
  publication-title: Adv Eng Informatics
– reference: Kaddour J, Lynch A, Liu Q, Kusner MJ, Silva R. Causal Machine Learning: A Survey and Open Problems 2022.
– volume: 226
  year: 2022
  ident: bib0087
  article-title: Adaptive open set domain generalization network : Learning to diagnose unknown faults under unknown working conditions
  publication-title: Reliab Eng Syst Saf
– start-page: 1
  year: 2018
  end-page: 13
  ident: bib0057
  article-title: MixUp: Beyond empirical risk minimization
  publication-title: Proc 6th Int Conf Learn Represent ICLR 2018 - Conf Track Proc
– start-page: 1679
  year: 2023
  end-page: 1684
  ident: bib0109
  article-title: An application-oriented perspective of domain generalization for cross-domain fault diagnosis
  publication-title: Proc 2023 26th Int Conf Comput Support Coop Work Des
– volume: 200
  year: 2023
  ident: bib0085
  article-title: Domain fuzzy generalization networks for semi-supervised intelligent fault diagnosis under unseen working conditions
  publication-title: Mech Syst Signal Process
– volume: 218
  year: 2022
  ident: bib0002
  article-title: Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice
  publication-title: Reliab Eng Syst Saf
– volume: 64–65
  start-page: 100
  year: 2015
  end-page: 131
  ident: bib0097
  article-title: Rolling element bearing diagnostics using the case western reserve university data: a benchmark study
  publication-title: Mech Syst Signal Process
– volume: 99
  start-page: 465
  year: 2020
  end-page: 478
  ident: bib0019
  article-title: A diagnosis framework based on domain adaptation for bearing fault diagnosis across diverse domains
  publication-title: ISA Trans
– volume: 289
  start-page: 1066
  year: 2006
  end-page: 1090
  ident: bib0095
  article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
  publication-title: J Sound Vib
– volume: 186
  year: 2021
  ident: bib0018
  article-title: A multi-source ensemble domain adaptation method for rotary machine fault diagnosis
  publication-title: Meas J Int Meas Confed
– volume: 71
  year: 2022
  ident: bib0086
  article-title: A new adversarial domain generalization network based on class boundary feature detection for bearing fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 173
  year: 2022
  ident: bib0054
  article-title: A domain generalization network combing invariance and specificity towards real-time intelligent fault diagnosis
  publication-title: Mech Syst Signal Process
– volume: 71
  year: 2022
  ident: bib0065
  article-title: Conditional contrastive domain generalization for fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 2016
  start-page: 152
  year: 2016
  end-page: 156
  ident: bib0098
  article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification
  publication-title: Third Eur Conf Progn Heal Manag Soc
– start-page: 1
  year: 2023
  end-page: 9
  ident: bib0080
  article-title: Federated domain generalization : a secure and robust framework for intelligent fault diagnosis
  publication-title: IEEE Trans Ind Informatics
– volume: 8
  start-page: 91103
  year: 2020
  end-page: 91115
  ident: bib0064
  article-title: Learn generalization feature via convolutional neural network: a fault diagnosis scheme toward unseen operating conditions
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib0036
  article-title: Whitening-Net: a generalized network to diagnose the faults among different machines and conditions
  publication-title: IEEE Trans Neural Networks Learn Syst
– year: 2023
  ident: bib0076
  article-title: Fine-grained transfer learning based on deep feature decomposition for rotating equipment fault diagnosis
  publication-title: Meas Sci Technol
– volume: 49
  start-page: 63
  year: 2013
  end-page: 72
  ident: bib0012
  article-title: Basic research on machinery fault diagnosis-what is the prescription
  publication-title: Jixie Gongcheng Xuebao/Journal Mech Eng
– volume: 32
  year: 2021
  ident: bib0049
  article-title: A dual-view alignment-based domain adaptation network for fault diagnosis
  publication-title: Meas Sci Technol
– volume: 145
  year: 2023
  ident: bib0007
  article-title: In-situ fault detection for the spindle motor of CNC machines via multi-stage residual fusion convolution neural networks
  publication-title: Comput Ind
– volume: 407
  start-page: 121
  year: 2020
  end-page: 135
  ident: bib0038
  article-title: A systematic review of deep transfer learning for machinery fault diagnosis
  publication-title: Neurocomputing
– reference: Yao H, Yang X, Zhou A, Finn C. Multi-Domain Long-Tailed Learning by Augmenting Disentangled Representations 2022:1–22.
– volume: 69
  start-page: 8064
  year: 2020
  end-page: 8075
  ident: bib0083
  article-title: Deep semisupervised domain generalization network for rotary machinery fault diagnosis under variable speed
  publication-title: IEEE Trans Instrum Meas
– volume: 9915 LNCS
  start-page: 443
  year: 2016
  end-page: 450
  ident: bib0105
  article-title: Deep CORAL: correlation alignment for deep domain adaptation
  publication-title: Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– volume: 192
  year: 2023
  ident: bib0072
  article-title: Deep causal factorization network: a novel domain generalization method for cross-machine bearing fault diagnosis
  publication-title: Mech Syst Signal Process
– volume: 70
  year: 2021
  ident: bib0030
  article-title: Domain adversarial graph convolutional network for fault diagnosis under variable working conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 67
  start-page: 9747
  year: 2020
  end-page: 9757
  ident: bib0022
  article-title: A polynomial kernel induced distance metric to improve deep transfer learning for fault diagnosis of machines
  publication-title: IEEE Trans Ind Electron
– year: 2022
  ident: bib0050
  article-title: Knowledge transfer in fault diagnosis of rotary machines
  publication-title: IET Collab Intell Manuf
– volume: 191
  year: 2023
  ident: bib0011
  article-title: Conditional feature disentanglement learning for anomaly detection in machines operating under time-varying conditions
  publication-title: Mech Syst Signal Process
– volume: 13
  start-page: 8013
  year: 2013
  end-page: 8041
  ident: bib0096
  article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis
  publication-title: Sensors (Switzerland)
– volume: 69
  start-page: 8702
  year: 2020
  end-page: 8712
  ident: bib0034
  article-title: Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery
  publication-title: IEEE Trans Instrum Meas
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib0056
  article-title: A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 69
  start-page: 7372
  year: 2022
  end-page: 7382
  ident: bib0106
  article-title: An optimal transport-embedded similarity measure for diagnostic knowledge transferability analytics across machines
  publication-title: IEEE Trans Ind Electron
– volume: 11
  start-page: 1
  year: 2016
  end-page: 22
  ident: bib0099
  article-title: Fault diagnosis for rotating machinery: a method based on image processing
  publication-title: PLoS One
– volume: 138
  year: 2020
  ident: bib0004
  article-title: Applications of machine learning to machine fault diagnosis: a review and roadmap
  publication-title: Mech Syst Signal Process
– volume: 126
  year: 2022
  ident: bib0051
  article-title: A framework for predicting the remaining useful life of machinery working under time-varying operational conditions [Formula presented]
  publication-title: Appl Soft Comput
– start-page: 1
  year: 2023
  end-page: 11
  ident: bib0075
  article-title: Relationship transfer domain generalization network for rotating machinery fault diagnosis under different working conditions
  publication-title: IEEE Trans Ind Informatics
– volume: 10
  start-page: 988
  year: 1999
  end-page: 999
  ident: bib0103
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans Neural Networks
– volume: 125
  year: 2021
  ident: bib0041
  article-title: Computers in industry Multi-task Learning of Classification and Denoising (MLCD) for noise-robust rotor system diagnosis
  publication-title: Comput Ind
– volume: 409
  start-page: 35
  year: 2020
  end-page: 45
  ident: bib0025
  article-title: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data
  publication-title: Neurocomputing
– volume: 403
  start-page: 409
  year: 2020
  end-page: 420
  ident: bib0055
  article-title: Domain generalization in rotating machinery fault diagnostics using deep neural networks
  publication-title: Neurocomputing
– volume: 71
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib0017
  article-title: Multisource domain feature adaptation network for bearing fault diagnosis under time-varying working conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 16
  start-page: 2044
  year: 2020
  end-page: 2053
  ident: bib0033
  article-title: Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network
  publication-title: IEEE Trans Ind Informatics
– volume: 23
  start-page: 23408
  year: 2022
  end-page: 23421
  ident: bib0010
  article-title: Generative adversarial networks with AdaBoost ensemble learning for anomaly detection in high-speed train automatic doors
  publication-title: IEEE Trans Intell Transp Syst
– volume: 239
  year: 2023
  ident: bib0003
  article-title: Hybrid system response model for condition monitoring of bearings under time-varying operating conditions
  publication-title: Reliab Eng Syst Saf
– reference: Chen B, Shen C, Member S, Wang D, Kong L, Chen L, et al. A Lifelong Learning Method for Gearbox Diagnosis With Incremental Fault Types 2022;71.
– volume: 67
  start-page: 1293
  year: 2020
  end-page: 1304
  ident: bib0035
  article-title: Intelligent fault identification based on multisource domain generalization towards actual diagnosis scenario
  publication-title: IEEE Trans Ind Electron
– start-page: 1
  year: 2020
  end-page: 9
  ident: bib0032
  article-title: Chiller fault diagnosis based on VAE-Enabled generative adversarial networks
  publication-title: IEEE Trans Autom Sci Eng
– reference: Zha D, States U. Data-centric Artificial Intelligence: A Survey 2023;1.
– start-page: 1
  year: 2022
  end-page: 11
  ident: bib0068
  article-title: Domain transferability-based deep domain generalization method towards actual fault diagnosis scenarios
  publication-title: IEEE Trans Ind Informatics
– volume: 162
  year: 2022
  ident: bib0047
  article-title: A label description space embedded model for zero-shot intelligent diagnosis of mechanical compound faults
  publication-title: Mech Syst Signal Process
– volume: 3203
  year: 2021
  ident: bib0062
  article-title: Adversarial domain-invariant generalization: a generic domain-regressive framework for bearing fault diagnosis under unseen conditions
  publication-title: IEEE Trans Ind Informatics
– volume: 15
  start-page: 2446
  year: 2019
  end-page: 2455
  ident: bib0048
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans Ind Informatics
– volume: 49
  year: 2019
  ident: bib0026
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans Syst Man, Cybern Syst
– volume: 70
  year: 2021
  ident: bib0063
  article-title: Conditional adversarial domain generalization with a single discriminator for bearing fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 6
  start-page: 66367
  year: 2018
  end-page: 66384
  ident: bib0101
  article-title: Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks
  publication-title: IEEE Access
– start-page: 1
  year: 2022
  end-page: 11
  ident: bib0023
  article-title: Deep joint distribution alignment: a novel enhanced-domain adaptation mechanism for fault transfer diagnosis
  publication-title: IEEE Trans Cybern
– volume: 235
  year: 2023
  ident: bib0059
  article-title: Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions
  publication-title: Reliab Eng Syst Saf
– reference: Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T. Deep Domain Confusion: Maximizing for Domain Invariance 2014.
– volume: 169
  year: 2021
  ident: bib0020
  article-title: Multi-block domain adaptation with central moment discrepancy for fault diagnosis
  publication-title: Measurement
– volume: 71
  year: 2022
  ident: bib0053
  article-title: Fault diagnosis of rotating machinery under multiple operating conditions generalization: a representation gradient muting paradigm
  publication-title: IEEE Trans Instrum Meas
– volume: 2022
  year: 2022
  ident: bib0060
  article-title: A hybrid matching network for fault diagnosis under different working conditions with limited data
  publication-title: Comput Intell Neurosci
– volume: 1
  start-page: 1
  year: 2023
  end-page: 10
  ident: bib0058
  article-title: Deep mixed domain generalization network for intelligent fault diagnosis under unseen conditions
  publication-title: IEEE Trans Ind Electron
– volume: 190
  year: 2022
  ident: bib0046
  article-title: Zero-shot learning for compound fault diagnosis of bearings
  publication-title: Expert Syst Appl
– start-page: 814
  year: 2021
  end-page: 823
  ident: bib0093
  article-title: Learning to diversify for single domain generalization
  publication-title: Proc IEEE Int Conf Comput Vis
– volume: 230
  year: 2023
  ident: bib0052
  article-title: Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network
  publication-title: Reliab Eng Syst Saf
– reference: Ren Y, Liu J, Wang Q, Zhang H. HSELL-Net : A Heterogeneous Sample Enhancement Network With Lifelong Learning Under Industrial Small Samples 2022:1–13.
– reference: Yang Y, Wang H, Katabi D. On multi-domain long-tailed recognition, Imbalanced Domain Generalization and Beyond 2022:57–75.
– volume: 130
  year: 2024
  ident: bib0078
  article-title: A federated distillation domain generalization framework for machinery fault diagnosis with data privacy
  publication-title: Eng Appl Artif Intell
– volume: 14
  start-page: 1
  year: 2022
  end-page: 14
  ident: bib0092
  article-title: Out-of-Domain generalization from a single source: an uncertainty quantification approach
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 137
  year: 2007
  end-page: 144
  ident: bib0061
  article-title: Analysis of representations for domain adaptation
  publication-title: Adv Neural Inf Process Syst
– start-page: 1
  year: 2022
  end-page: 12
  ident: bib0110
  article-title: Lifelong Bayesian learning machines for streaming industrial big data
  publication-title: IEEE Trans Syst Man, Cybern Syst
– year: 2023
  ident: bib0081
  article-title: Federated domain generalization with global robust model aggregation strategy for bearing fault diagnosis
  publication-title: Meas Sci Technol
– volume: 19
  start-page: 2909
  year: 2022
  end-page: 2918
  ident: bib0094
  article-title: Adversarial mutual information-guided single domain generalization network for intelligent fault diagnosis
  publication-title: IEEE Trans Ind Informatics
– volume: 6
  start-page: 173
  year: 2016
  end-page: 182
  ident: bib0100
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE Trans Reliab
– volume: 71
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib0045
  article-title: A lifelong learning method for gearbox diagnosis with incremental fault types
  publication-title: IEEE Trans Instrum Meas
– volume: 237
  year: 2023
  ident: bib0073
  article-title: An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions
  publication-title: Reliab Eng Syst Saf
– start-page: 1
  year: 2021
  end-page: 13
  ident: bib0077
  article-title: Causal disentanglement: a generalized bearing fault diagnostic framework in continuous degradation mode
  publication-title: IEEE Trans Neural Networks Learn Syst
– volume: 188
  year: 2023
  ident: bib0069
  article-title: A reliable feature-assisted contrastive generalization net for intelligent fault diagnosis under unseen machines and working conditions
  publication-title: Mech Syst Signal Process
– volume: 182
  year: 2021
  ident: bib0027
  article-title: A multi-representation-based domain adaptation network for fault diagnosis
  publication-title: Measurement
– start-page: 1
  year: 2023
  end-page: 11
  ident: bib0074
  article-title: Adaptive class center generalization network: a sparse domain-regressive framework for bearing fault diagnosis under unknown working conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 167
  year: 2022
  ident: bib0040
  article-title: A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: theories, applications and challenges
  publication-title: Mech Syst Signal Process
– reference: .
– volume: 189
  year: 2023
  ident: bib0084
  article-title: Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions
  publication-title: Mech Syst Signal Process
– volume: 127
  year: 2021
  ident: bib0031
  article-title: A double-layer attention based adversarial network for partial transfer learning in machinery fault diagnosis
  publication-title: Comput Ind
– volume: 86
  year: 2024
  ident: bib0016
  article-title: Robotics and Computer-Integrated Manufacturing MJAR : a novel joint generalization-based diagnosis method for industrial robots with compound faults
  publication-title: Robot Comput Integr Manuf
– volume: 70
  year: 2021
  ident: bib0070
  article-title: Deep domain generalization combining a priori diagnosis knowledge toward cross-domain fault diagnosis of rolling bearing
  publication-title: IEEE Trans Instrum Meas
– start-page: 224
  year: 2021
  end-page: 233
  ident: bib0091
  article-title: Progressive domain expansion network for single domain generalization
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– volume: 67
  start-page: 8005
  year: 2020
  end-page: 8015
  ident: bib0042
  article-title: Multitask convolutional neural network with information fusion for bearing fault diagnosis and localization
  publication-title: IEEE Trans Ind Electron
– reference: Maniyar U, Joseph KJ. Zero Shot Domain Generalization n.d.
– volume: 1
  start-page: 151
  year: 2021
  end-page: 166
  ident: bib0015
  article-title: A decade survey of transfer learning (2010–2020)
  publication-title: IEEE Trans Artif Intell
– volume: 66
  start-page: 233
  year: 2023
  end-page: 247
  ident: bib0006
  article-title: In-situ fault diagnosis for the harmonic reducer of industrial robots via multi-scale mixed convolutional neural networks
  publication-title: J Manuf Syst
– volume: 72–73
  start-page: 303
  year: 2016
  end-page: 315
  ident: bib0005
  article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech Syst Signal Process
– volume: 71
  year: 2022
  ident: bib0067
  article-title: Generalization on unseen domains via model-agnostic learning for intelligent fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 66
  start-page: 233
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0006
  article-title: In-situ fault diagnosis for the harmonic reducer of industrial robots via multi-scale mixed convolutional neural networks
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2022.12.001
– start-page: 1679
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0109
  article-title: An application-oriented perspective of domain generalization for cross-domain fault diagnosis
– volume: 14
  start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0092
  article-title: Out-of-Domain generalization from a single source: an uncertainty quantification approach
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0008
  article-title: A balanced and weighted alignment network for partial transfer fault diagnosis
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2022.03.014
– year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0050
  article-title: Knowledge transfer in fault diagnosis of rotary machines
  publication-title: IET Collab Intell Manuf
  doi: 10.1049/cim2.12047
– ident: 10.1016/j.ress.2024.109964_bib0089
– volume: 191
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0011
  article-title: Conditional feature disentanglement learning for anomaly detection in machines operating under time-varying conditions
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110139
– volume: 173
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0054
  article-title: A domain generalization network combing invariance and specificity towards real-time intelligent fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.108990
– ident: 10.1016/j.ress.2024.109964_bib0043
– volume: 15
  start-page: 2446
  year: 2019
  ident: 10.1016/j.ress.2024.109964_bib0048
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2018.2864759
– start-page: 137
  year: 2007
  ident: 10.1016/j.ress.2024.109964_bib0061
  article-title: Analysis of representations for domain adaptation
  publication-title: Adv Neural Inf Process Syst
– volume: 169
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0020
  article-title: Multi-block domain adaptation with central moment discrepancy for fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108516
– volume: 23
  start-page: 23408
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0010
  article-title: Generative adversarial networks with AdaBoost ensemble learning for anomaly detection in high-speed train automatic doors
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3203871
– volume: 20
  start-page: 2182
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0028
  article-title: Simulation data driven weakly supervised adversarial domain adaptation approach for intelligent cross-machine fault diagnosis
  publication-title: Struct Heal Monit
  doi: 10.1177/1475921720980718
– volume: 9915 LNCS
  start-page: 443
  year: 2016
  ident: 10.1016/j.ress.2024.109964_bib0105
  article-title: Deep CORAL: correlation alignment for deep domain adaptation
  publication-title: Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– volume: 188
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0069
  article-title: A reliable feature-assisted contrastive generalization net for intelligent fault diagnosis under unseen machines and working conditions
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.110011
– volume: 205
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0029
  article-title: Double-level adversarial domain adaptation network for intelligent fault diagnosis
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2020.106236
– volume: 409
  start-page: 35
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0025
  article-title: Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.040
– start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0077
  article-title: Causal disentanglement: a generalized bearing fault diagnostic framework in continuous degradation mode
  publication-title: IEEE Trans Neural Networks Learn Syst
– ident: 10.1016/j.ress.2024.109964_bib0108
– ident: 10.1016/j.ress.2024.109964_bib0111
– volume: 70
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0070
  article-title: Deep domain generalization combining a priori diagnosis knowledge toward cross-domain fault diagnosis of rolling bearing
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.3016068
– volume: 200
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0085
  article-title: Domain fuzzy generalization networks for semi-supervised intelligent fault diagnosis under unseen working conditions
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110579
– volume: 67
  start-page: 9747
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0022
  article-title: A polynomial kernel induced distance metric to improve deep transfer learning for fault diagnosis of machines
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2953010
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0017
  article-title: Multisource domain feature adaptation network for bearing fault diagnosis under time-varying working conditions
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3216413
– volume: 182
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0027
  article-title: A multi-representation-based domain adaptation network for fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109650
– volume: 70
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0063
  article-title: Conditional adversarial domain generalization with a single discriminator for bearing fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 71
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0065
  article-title: Conditional contrastive domain generalization for fault diagnosis
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2022.3154000
– volume: 86
  year: 2024
  ident: 10.1016/j.ress.2024.109964_bib0016
  article-title: Robotics and Computer-Integrated Manufacturing MJAR : a novel joint generalization-based diagnosis method for industrial robots with compound faults
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2023.102668
– volume: 403
  start-page: 409
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0055
  article-title: Domain generalization in rotating machinery fault diagnostics using deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.014
– volume: 256
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0079
  article-title: Federated adversarial domain generalization network: a novel machinery fault diagnosis method with data privacy
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2022.109880
– volume: 127
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0031
  article-title: A double-layer attention based adversarial network for partial transfer learning in machinery fault diagnosis
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2021.103399
– volume: 126
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0051
  article-title: A framework for predicting the remaining useful life of machinery working under time-varying operational conditions [Formula presented]
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109164
– ident: 10.1016/j.ress.2024.109964_bib0044
  doi: 10.1109/TIM.2022.3177138
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2024.109964_bib0099
  article-title: Fault diagnosis for rotating machinery: a method based on image processing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164111
– volume: 162
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0047
  article-title: A label description space embedded model for zero-shot intelligent diagnosis of mechanical compound faults
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108036
– volume: 186
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0018
  article-title: A multi-source ensemble domain adaptation method for rotary machine fault diagnosis
  publication-title: Meas J Int Meas Confed
– volume: 130
  year: 2024
  ident: 10.1016/j.ress.2024.109964_bib0078
  article-title: A federated distillation domain generalization framework for machinery fault diagnosis with data privacy
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107765
– volume: 71
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0086
  article-title: A new adversarial domain generalization network based on class boundary feature detection for bearing fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– volume: 8
  start-page: 91103
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0064
  article-title: Learn generalization feature via convolutional neural network: a fault diagnosis scheme toward unseen operating conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994310
– volume: 1
  start-page: 151
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0015
  article-title: A decade survey of transfer learning (2010–2020)
  publication-title: IEEE Trans Artif Intell
  doi: 10.1109/TAI.2021.3054609
– year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0076
  article-title: Fine-grained transfer learning based on deep feature decomposition for rotating equipment fault diagnosis
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/acc04a
– volume: 7
  start-page: 129260
  year: 2019
  ident: 10.1016/j.ress.2024.109964_bib0013
  article-title: Cross-Domain fault diagnosis using knowledge transfer strategy: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939876
– volume: 6
  start-page: 173
  year: 2016
  ident: 10.1016/j.ress.2024.109964_bib0100
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE Trans Reliab
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0045
  article-title: A lifelong learning method for gearbox diagnosis with incremental fault types
  publication-title: IEEE Trans Instrum Meas
– start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0023
  article-title: Deep joint distribution alignment: a novel enhanced-domain adaptation mechanism for fault transfer diagnosis
  publication-title: IEEE Trans Cybern
– start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0068
  article-title: Domain transferability-based deep domain generalization method towards actual fault diagnosis scenarios
  publication-title: IEEE Trans Ind Informatics
– volume: 237
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0073
  article-title: An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109380
– year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0081
  article-title: Federated domain generalization with global robust model aggregation strategy for bearing fault diagnosis
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ace841
– volume: 69
  start-page: 7372
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0106
  article-title: An optimal transport-embedded similarity measure for diagnostic knowledge transferability analytics across machines
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2021.3095804
– volume: 3203
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0062
  article-title: Adversarial domain-invariant generalization: a generic domain-regressive framework for bearing fault diagnosis under unseen conditions
  publication-title: IEEE Trans Ind Informatics
– volume: 226
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0087
  article-title: Adaptive open set domain generalization network : Learning to diagnose unknown faults under unknown working conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108672
– volume: 145
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0007
  article-title: In-situ fault detection for the spindle motor of CNC machines via multi-stage residual fusion convolution neural networks
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2022.103810
– volume: 20
  start-page: 8374
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0037
  article-title: Knowledge transfer for rotary machine fault diagnosis
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2019.2949057
– start-page: 0046
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0102
  article-title: SuperGraph: spatial-temporal graph-based feature extraction for rotating machinery diagnosis
  publication-title: IEEE Trans Ind Electron
– volume: 49
  start-page: 63
  year: 2013
  ident: 10.1016/j.ress.2024.109964_bib0012
  article-title: Basic research on machinery fault diagnosis-what is the prescription
  publication-title: Jixie Gongcheng Xuebao/Journal Mech Eng
  doi: 10.3901/JME.2013.01.063
– volume: 19
  start-page: 2909
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0094
  article-title: Adversarial mutual information-guided single domain generalization network for intelligent fault diagnosis
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2022.3175018
– volume: 192
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0072
  article-title: Deep causal factorization network: a novel domain generalization method for cross-machine bearing fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110228
– year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0082
  article-title: Federated domain generalization for intelligent fault diagnosis based on pseudo-siamese network and robust global model aggregation
  publication-title: Int J Mach Learn Cybern
– volume: 138
  start-page: 514
  year: 2019
  ident: 10.1016/j.ress.2024.109964_bib0001
  article-title: A novel transfer learning method for robust fault diagnosis of rotating machines under variable working conditions
  publication-title: Meas J Int Meas Confed
  doi: 10.1016/j.measurement.2019.02.073
– start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0014
  article-title: MSiT: a cross-machine fault diagnosis model for machine-level CNC spindle motors
  publication-title: IEEE Trans Reliab
– volume: 69
  start-page: 8064
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0083
  article-title: Deep semisupervised domain generalization network for rotary machinery fault diagnosis under variable speed
  publication-title: IEEE Trans Instrum Meas
– ident: 10.1016/j.ress.2024.109964_bib0112
  doi: 10.1109/TII.2023.3256400
– volume: 189
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0084
  article-title: Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.110074
– volume: 72–73
  start-page: 303
  year: 2016
  ident: 10.1016/j.ress.2024.109964_bib0005
  article-title: Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.10.025
– ident: 10.1016/j.ress.2024.109964_bib0107
– volume: 6
  start-page: 66367
  year: 2018
  ident: 10.1016/j.ress.2024.109964_bib0101
  article-title: Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878491
– volume: 239
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0003
  article-title: Hybrid system response model for condition monitoring of bearings under time-varying operating conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109528
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0039
  article-title: Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study
  publication-title: IEEE Trans Instrum Meas
– volume: 16
  start-page: 2044
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0033
  article-title: Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2019.2934901
– volume: 407
  start-page: 121
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0038
  article-title: A systematic review of deep transfer learning for machinery fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.045
– start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0080
  article-title: Federated domain generalization : a secure and robust framework for intelligent fault diagnosis
  publication-title: IEEE Trans Ind Informatics
– volume: 71
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0053
  article-title: Fault diagnosis of rotating machinery under multiple operating conditions generalization: a representation gradient muting paradigm
  publication-title: IEEE Trans Instrum Meas
– volume: 2022
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0060
  article-title: A hybrid matching network for fault diagnosis under different working conditions with limited data
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/3024590
– volume: 10
  start-page: 988
  year: 1999
  ident: 10.1016/j.ress.2024.109964_bib0103
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.788640
– volume: 289
  start-page: 1066
  year: 2006
  ident: 10.1016/j.ress.2024.109964_bib0095
  article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2005.03.007
– volume: 32
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0049
  article-title: A dual-view alignment-based domain adaptation network for fault diagnosis
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac100e
– volume: 71
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0067
  article-title: Generalization on unseen domains via model-agnostic learning for intelligent fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– start-page: 1
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0032
  article-title: Chiller fault diagnosis based on VAE-Enabled generative adversarial networks
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2020.2969485
– volume: 2016
  start-page: 152
  year: 2016
  ident: 10.1016/j.ress.2024.109964_bib0098
  article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification
  publication-title: Third Eur Conf Progn Heal Manag Soc
– volume: 221
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0009
  article-title: Dual adversarial network for cross-domain open set fault diagnosis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108358
– volume: 13
  start-page: 8013
  year: 2013
  ident: 10.1016/j.ress.2024.109964_bib0096
  article-title: Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s130608013
– start-page: 814
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0093
  article-title: Learning to diversify for single domain generalization
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: 10.1016/j.ress.2024.109964_bib0090
  doi: 10.1007/978-3-031-20044-1_4
– volume: 69
  start-page: 8702
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0034
  article-title: Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.2995441
– volume: 3203
  start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0071
  article-title: Causal consistency network : a collaborative multi-machine generalization method for bearing fault diagnosis
  publication-title: IEEE Trans Ind Informatics
– volume: 70
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0030
  article-title: Domain adversarial graph convolutional network for fault diagnosis under variable working conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 167
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0040
  article-title: A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: theories, applications and challenges
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108487
– start-page: 5400
  year: 2018
  ident: 10.1016/j.ress.2024.109964_bib0104
  article-title: Domain generalization with adversarial feature learning
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– volume: 138
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0004
  article-title: Applications of machine learning to machine fault diagnosis: a review and roadmap
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.106587
– volume: 190
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0046
  article-title: Zero-shot learning for compound fault diagnosis of bearings
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116197
– start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0075
  article-title: Relationship transfer domain generalization network for rotating machinery fault diagnosis under different working conditions
  publication-title: IEEE Trans Ind Informatics
– start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0066
  article-title: Meta-Learning based domain generalization framework for fault diagnosis with gradient aligning and semantic matching
  publication-title: IEEE Trans Ind Info
– volume: 125
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0041
  article-title: Computers in industry Multi-task Learning of Classification and Denoising (MLCD) for noise-robust rotor system diagnosis
  publication-title: Comput Ind
– volume: 1
  start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0058
  article-title: Deep mixed domain generalization network for intelligent fault diagnosis under unseen conditions
  publication-title: IEEE Trans Ind Electron
– volume: 67
  start-page: 1293
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0035
  article-title: Intelligent fault identification based on multisource domain generalization towards actual diagnosis scenario
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2898619
– start-page: 224
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0091
  article-title: Progressive domain expansion network for single domain generalization
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– volume: 49
  year: 2019
  ident: 10.1016/j.ress.2024.109964_bib0026
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans Syst Man, Cybern Syst
  doi: 10.1109/TSMC.2017.2754287
– volume: 97
  start-page: 269
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0021
  article-title: Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.08.012
– start-page: 1
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0110
  article-title: Lifelong Bayesian learning machines for streaming industrial big data
  publication-title: IEEE Trans Syst Man, Cybern Syst
– volume: 230
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0052
  article-title: Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108883
– volume: 64–65
  start-page: 100
  year: 2015
  ident: 10.1016/j.ress.2024.109964_bib0097
  article-title: Rolling element bearing diagnostics using the case western reserve university data: a benchmark study
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 99
  start-page: 465
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0019
  article-title: A diagnosis framework based on domain adaptation for bearing fault diagnosis across diverse domains
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.08.040
– ident: 10.1016/j.ress.2024.109964_bib0024
– volume: 67
  start-page: 8005
  year: 2020
  ident: 10.1016/j.ress.2024.109964_bib0042
  article-title: Multitask convolutional neural network with information fusion for bearing fault diagnosis and localization
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2942548
– start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0036
  article-title: Whitening-Net: a generalized network to diagnose the faults among different machines and conditions
  publication-title: IEEE Trans Neural Networks Learn Syst
– start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0074
  article-title: Adaptive class center generalization network: a sparse domain-regressive framework for bearing fault diagnosis under unknown working conditions
  publication-title: IEEE Trans Instrum Meas
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2024.109964_bib0056
  article-title: A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions
  publication-title: IEEE Trans Instrum Meas
– start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2024.109964_bib0057
  article-title: MixUp: Beyond empirical risk minimization
– volume: 235
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0059
  article-title: Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109188
– volume: 1
  start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109964_bib0088
  article-title: Imbalanced domain generalization via semantic-discriminative augmentation for intelligent fault diagnosis
  publication-title: Adv Eng Informatics
– volume: 218
  year: 2022
  ident: 10.1016/j.ress.2024.109964_bib0002
  article-title: Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108119
SSID ssj0004957
Score 2.7152138
SecondaryResourceType review_article
Snippet •The first taxonomy for domain generalization-based fault diagnosis is proposed.•A basic and reproducible code framework is provided.•A broad discussion of...
Most data-driven methods for fault diagnostics rely on the assumption of independently and identically distributed data of training and testing. However,...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109964
SubjectTerms Deep learning
Domain generalization
Domain shift
Engineering Sciences
Fault diagnosis
Title Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study
URI https://dx.doi.org/10.1016/j.ress.2024.109964
https://hal.science/hal-04835827
Volume 245
WOSCitedRecordID wos001177891000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbSlgMcEE9RSpGFuEWOsg_venuLaFBBqEKiiNxW9q5N06a7IUmjcu8P78za-2ihFT1wWUWTXcfJfBmPxzPfEPIe1pBcwrLF_JjHLFTCY8hzw3JjhokMcl8oUzWbiA8PxWSSfO31LutamPUsLgpxcZHM_6uqQQbKxtLZe6i7GRQE8BqUDldQO1z_SfH75Rns9rE1MoabXJlllU1YrYgst-8beT5bYegVM-2mSxcg7JxnsxIpkNEhnbcFmZbbta_gCx-fycVph562ZvnWs6nl_v7d1y3ZYQUxSxvdX0rj2EdcyLp0B_9lI5tWonEBVroRfnOFJD80diL72Y1X-GGbHdgEHj0GdmTYtcF-yDtWFE_rLLf5HwbexhpOBhiLGODwg_bm62zaN1a5JvewTms7SXGMFMdI7RgbZAsQm4Bt3Bp9Gk8-t_W1iWWMrWfuiq9snuDNmdzm4Gwc16H6ynU5ekIeuz0HHVmsPCU9XTwjjzpMlM_JL4saeh01FFBDu6ihFWpog5o9Oiro3zBDO5ihgBkqaYMZWmHmBfn-cXz04YC5bhwsC4JwxQw4OaFQ4KCCzycl50qHWZAHEU-U8hPwVDkIvDjSsIM1UopI-1qLXGdhoA3PgpdksygL_YrQPM-MQnEUxeFQaOXrGFYeleRGRCIKtolX_4Rp5qjqsWPKLL1deduk3zwzt0Qtd97Na82kztW0LmQKQLvzuXegxuYDkJv9YPQlRRn2ZuDCj9fe63tNZYc8bP8mb8jmanGud8mDbL2aLhdvHRSvAHc5r28
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+generalization+for+cross-domain+fault+diagnosis%3A+An+application-oriented+perspective+and+a+benchmark+study&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zhao%2C+Chao&rft.au=Zio%2C+Enrico&rft.au=Shen%2C+Weiming&rft.date=2024-05-01&rft.issn=0951-8320&rft.volume=245&rft.spage=109964&rft_id=info:doi/10.1016%2Fj.ress.2024.109964&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2024_109964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon